Supranto
Unknown Affiliation

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search

Studi Proses Pembuatan Biodiesel dari Minyak Kelapa (Coconut Oil) dengan Bantuan Gelombang Ultrasonik Sri Kembaryanti Putri; Supranto; Rahman Sudiyo
Jurnal Rekayasa Proses Vol 6, No 1 (2012)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (116.402 KB) | DOI: 10.22146/jrekpros.2453

Abstract

Biodisel dapat dibuat melalui proses metanolisis berbagai minyak nabati seperti minyak kelapa, minyak kelapa sawit, minyak kedelai dan lain-lain. Minyak kelapa memiliki potensi besar untuk digunakan sebagai bahan baku dalam pembuatan biodisel karena ketersediaannya yang berlimpah. Gelombang ultrasonik dapat digunakan untuk meningkatkan konversi reaksi dan mempercepat laju reaksi. Tujuan penelitian ini adalah untuk mempelajari pengaruh penggunaan gelombang ultrasonik dalam proses transesterifikasi minyak kelapa, perbandingan pereaksi, konsentrasi katalisator dan aktivasi metanol terhadap konversi reaksi. Katalisator natrium hidroksida dengan berat tertentu dilarutkan di dalam metanol dalam volum tertentu. Setelah terlarut sempurna bersamaan dengan minyak kelapa dimasukkan ke dalam reaktor dan reaksi dijalankan. Sampel diambil setiap interval 10 menit untuk dianalisis kandungan asam lemaknya. Reaksi dihentikan setelah mencapai waktu 60 menit. Setelah itu, biodisel yang terbentuk dipisahkan dari gliserol dan dimurnikan. Hasil percobaan menunjukkan bahwa transesterifikasi minyak kelapa dapat dipacu dengan bantuan gelombang ultrasonik. Konversi reaksi yang dicapai empat kali lebih besar (85,66%) dibandingkan dengan konversi pada proses konvensional (20,15%). Proses dilakukan pada kondisi operasi yang sama; perbandingan pereaksi 5 mgek metanol/mgek minyak, 1% berat katalisator, dan suhu awal reaksi 60°C. Hasil penelitian menunjukkan semakin tinggi perbandingan ekivalen metanol-minyak, semakin tinggi konversi reaksi yang dicapai. Kata kunci: biodisel, minyak kelapa, transesterifikasi, gelombang ultrasonik, tetapan laju reaksi Biodiesel is produced by methanolysis of various vegetable oils such as coconut oil, palm oil, seed oil, soybean oil, etc. Coconut oil has the potential as a raw material for making biodiesel due its abundant availability. The use of the ultrasonic waves can increase conversion and reaction rate. The objective of this study was to study the effect of the use of ultrasonic waves on the transesterification of coconut oil, the ratio of reactants, catalyst concentration, and activation of methanol on the reaction conversion. Sodium hydroxide catalyst with a specific weight was dissolved in methanol with a certain volume. After dissolvtion was completed, the reactants including coconut oil with a certain volume were put into the reactor, and reaction was then started. Samples were taken every 10 minute intervals for analysis of fatty acids. The reaction was stopped after 60 minutes. Furthermore, biodiesel was separated from glycerol and purified. Experimental results showed that transesterification of coconut oil could be improved with the help of ultrasonic waves. The obtained conversion was 4 times higher (85,66%) than the conversions generated in the conventional process (20,15%) The process was done in the same condition which was the ratio of reactants of 5 mgek methanol / mgek oil, catalyst 1% by weight oil and the initial reaction temperature of 60C. The greater the ratio of methanol-oil equivalent, the higher reaction conversion is. Keywords: biodiesel, coconut oil, transesterification, ultrasonic wave, reaction rate constant
Pelepasan Lambat (Slow Release) Diazinon dari Mikrokapsul Melamin Urea Formaldehid Retno Sulistyo Dhamar Lestari; Rochmadi; Supranto
Jurnal Rekayasa Proses Vol 7, No 2 (2013)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (517.052 KB) | DOI: 10.22146/jrekpros.4949

Abstract

Konsep dasar slow release adalah pengaturan pelepasan bahan aktif dari mikrokapsul dengan pelapisan dari bahan semi permeable yang tidak larut dalam air atau bahan berpori yang permeable. Pengaturan ketebalan dinding mikrokapsul dapat digunakan untuk mengendalikan kecepatan difusi bahan aktif dari mikrokapsul. Mikrokapsul dengan bahan inti pestisida diazinon dibuat dengan metode insitu polimerisasi, menggunakan melamin, urea, dan formaldehid sebagai bahan dinding mikrokapsul. Polimerisasi dilakukan pada suhu 50˚C, pH 3, dengan waktu homogenisasi 30 menit dan waktu mikroenkapsulasi 2 jam. Pengujian kecepatan pelepasan pestisida dilakukan dengan merendam sejumlah mikrokapsul melamin urea formaldehid (MUF) dalam aquades dengan pH yang bervariasi dan ketebalan dinding mikrokapsul yang berbeda. Pada penelitian ini, diameter mikrokapsul MUF diperoleh pada kisaran 50 sampai dengan 160 μm. Tanpa penambahan surfaktan, hasil mikrokapsul memiliki ketebalan 13,8 μm. Sedangkan dengan penambahan SDS dan PVA tebal dinding mikrokapsul yang dihasilkan mengalami penurunan sebesar 45%, yaitu menjadi 7,55 μm. Pada mikrokapsul dengan ketebalan 13,8 μm, kecepatan pelepasan pestisida berada pada kisaran 0,52 x 10-6 sampai dengan 1,69 x 10-6 mg/cm2·s. Sedangkan pada mikrokapsul dengan ketebalan 7,55 μm, kecepatan pelepasan diazinon meningkat sebesar 74%, yaitu berada pada kisaran 0,66 x 10-6 sampai dengan 3,4 x 10-6 mg/cm2·s. Kata kunci : slow release, mikrokapsul melamin urea formaldehid, diazinon The basic concept of slow release is to control the active ingredient release from microcapsules by means of coating made from either water-insoluble, semi permeable or porous permeable materials. By designing microcapsules wall thickness, the diffusion rate of active ingredient can be controlled. Microcapsules containing diazinon pesticides as a core material have been prepared by in-situ polymerization using melamin urea formaldehyde prepolymer as the wall material. The polymerization had been done at 50 °C and pH 3, with homogenization time of 30 minutes, and microencapsulation time of 2 hours. To measure pesticide release rate, a number of Melamine Urea Formaldehyde (MUF) microcapsules were soaked in aquadest at various pH and microcapsules wall thicknesses. In this study, the diameter of MUF microcapsules ranged from 50 to 160 μm. Without surfactant addition, the microcapsule wall thickness was 13.8 μm, but by adding SDS and PVA the wall thickness of microcapsule decreased by 45% i.e. around 7.55 μm. For microcapsules with wall thickness of 13.8 μm, the pesticide releasing rate ranged from 0.52 x 10-6 to 1.69 x 10-6 mg/cm2·s. On the other side, the microcapsules with wall thickness of 7.55 μm the pesticide releasing rate dramatically increased by 74% ranged from 0.66 x 10-6 to 3.4 x 10-6 mg/cm2·s. Keywords: slow release, melamine urea formaldehyde microcapsules, diazinon.
Modifikasi Sodium Lignosulfonat Melalui Epoksidasi Minyak Biji Kapuk dan Penambahan Kosurfaktan Muhammad Khoirul Anam; Suryo Purwono; Supranto
Jurnal Rekayasa Proses Vol 9, No 2 (2015)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (520.651 KB) | DOI: 10.22146/jrekpros.31032

Abstract

The objective of this research is to reduce the interfacial tension of sodium lignosulfonate (SLS). SLS formulation (1%) showed the interfacial tension of 2.34 mN/m. This value is still relatively large when compared to interfacial tention of required surfactant for enhanced oil recovery (EOR). The terms of surfactants that can be used in EOR must have ≤10-3 mN/m interfacial tension. The performance of SLS was expected to be improved by adding the epoxide compound and co-surfactants (1-octanol). Epoxide compound was made by reacting kapok oil with acetic acid and hydrogen peroxide with in-situ method. Temperature of epoxidation reaction was varied i.e. 60°C, 70°C and 80°C, while the time of reaction was varied from 15 to 90 minutes. The evaluation showed that equation of the reaction rate coefficient (k) for the epoxide was ????= 124,82 exp (−24,14/RT). The addition of the epoxide compound 0.5% w/w of the formulation SLS was able to reduce the interfacial tension value up to 9.95 x 10-2 mN/m. The addition of co-surfactant (1-oktanol) was varied between 0.1 and 0.4% of the total mass (SLS + epoxide + water formation). The lowest interfacial tension (2.43 x 10-3 mN/m) was obtained by co-surfactants addition of 0.2% w/w. Keywords: Sodium lignosulfonat, epoxidation kapok oil, co-surfactant, interfacial tension, enhanced oil recovery Penelitian ini bertujuan untuk menurunkan tegangan antarmuka dari sodium lignosulfonat (SLS). Pengukuran tegangan antarmuka yang telah dilakukaan pada formulasi sodium lignosulfonat atau SLS (1%) memiliki nilai tegangan antarmuka sebesar 2,34 mN/m. Nilai tegangan antarmuka dari SLS ini masih relatif besar jika dibandingkan dengan syarat surfaktan untuk perolehan kembali minyak bumi atau enhanced oil recovery (EOR). Syarat surfaktan sebagai agen EOR adalah memiliki nilai tegangan antarmuka sebesar ≤10-3 mN/m. Kekurangan dari SLS diharapkan dapat diperbaiki dengan penambahan senyawa epoksida dan kosurfaktan (1-oktanol). Senyawa epoksida dibuat dengan mereaksikan sabun minyak biji kapuk dengan asam asetat dan hidrogen peroksida secara insitu. Reaksi epoksidasi divariasikan pada suhu 60oC, 70oC, dan 80oC, sedangkan waktu reaksi divariasikan pada rentang 15 dan 90 menit. Persamaan konstanta laju reaksi untuk epoksidasi diperoleh sebesar ????= 124,82 exp (−24,14/RT). Penambahan senyawa epoksida 0,5% w/w pada formulasi SLS mampu menurunkan nilai Tegangan antarmuka hingga 9,95x10-2 mN/m. Penambahan kosurfaktan 1-oktanol divariasikan antara 0,1–0,4% dari massa total formulasi utama (SLS+Epoksida+Air Formasi). Nilai tegangan antarmuka terkecil diperoleh pada penambahan kosurfaktan sebanyak 0,2% w/w, yaitu sebesar 2,43x10-3 mN/m. Kata kunci: Sodium lignosulfonat, epoksidasi, minyak biji kapuk, kosurfaktan, tegangan antarmuka, enhanced oil recovery
Studi Proses Pembuatan Biodiesel dari Minyak Kelapa (Coconut Oil) dengan Bantuan Gelombang Ultrasonik Sri Kembaryanti Putri; Supranto; Rahman Sudiyo
Jurnal Rekayasa Proses Vol 6, No 1 (2012)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.2453

Abstract

Biodisel dapat dibuat melalui proses metanolisis berbagai minyak nabati seperti minyak kelapa, minyak kelapa sawit, minyak kedelai dan lain-lain. Minyak kelapa memiliki potensi besar untuk digunakan sebagai bahan baku dalam pembuatan biodisel karena ketersediaannya yang berlimpah. Gelombang ultrasonik dapat digunakan untuk meningkatkan konversi reaksi dan mempercepat laju reaksi. Tujuan penelitian ini adalah untuk mempelajari pengaruh penggunaan gelombang ultrasonik dalam proses transesterifikasi minyak kelapa, perbandingan pereaksi, konsentrasi katalisator dan aktivasi metanol terhadap konversi reaksi. Katalisator natrium hidroksida dengan berat tertentu dilarutkan di dalam metanol dalam volum tertentu. Setelah terlarut sempurna bersamaan dengan minyak kelapa dimasukkan ke dalam reaktor dan reaksi dijalankan. Sampel diambil setiap interval 10 menit untuk dianalisis kandungan asam lemaknya. Reaksi dihentikan setelah mencapai waktu 60 menit. Setelah itu, biodisel yang terbentuk dipisahkan dari gliserol dan dimurnikan. Hasil percobaan menunjukkan bahwa transesterifikasi minyak kelapa dapat dipacu dengan bantuan gelombang ultrasonik. Konversi reaksi yang dicapai empat kali lebih besar (85,66%) dibandingkan dengan konversi pada proses konvensional (20,15%). Proses dilakukan pada kondisi operasi yang sama; perbandingan pereaksi 5 mgek metanol/mgek minyak, 1% berat katalisator, dan suhu awal reaksi 60°C. Hasil penelitian menunjukkan semakin tinggi perbandingan ekivalen metanol-minyak, semakin tinggi konversi reaksi yang dicapai. Kata kunci: biodisel, minyak kelapa, transesterifikasi, gelombang ultrasonik, tetapan laju reaksi Biodiesel is produced by methanolysis of various vegetable oils such as coconut oil, palm oil, seed oil, soybean oil, etc. Coconut oil has the potential as a raw material for making biodiesel due its abundant availability. The use of the ultrasonic waves can increase conversion and reaction rate. The objective of this study was to study the effect of the use of ultrasonic waves on the transesterification of coconut oil, the ratio of reactants, catalyst concentration, and activation of methanol on the reaction conversion. Sodium hydroxide catalyst with a specific weight was dissolved in methanol with a certain volume. After dissolvtion was completed, the reactants including coconut oil with a certain volume were put into the reactor, and reaction was then started. Samples were taken every 10 minute intervals for analysis of fatty acids. The reaction was stopped after 60 minutes. Furthermore, biodiesel was separated from glycerol and purified. Experimental results showed that transesterification of coconut oil could be improved with the help of ultrasonic waves. The obtained conversion was 4 times higher (85,66%) than the conversions generated in the conventional process (20,15%) The process was done in the same condition which was the ratio of reactants of 5 mgek methanol / mgek oil, catalyst 1% by weight oil and the initial reaction temperature of 60C. The greater the ratio of methanol-oil equivalent, the higher reaction conversion is. Keywords: biodiesel, coconut oil, transesterification, ultrasonic wave, reaction rate constant
Pelepasan Lambat (Slow Release) Diazinon dari Mikrokapsul Melamin Urea Formaldehid Retno Sulistyo Dhamar Lestari; Rochmadi; Supranto
Jurnal Rekayasa Proses Vol 7, No 2 (2013)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.4949

Abstract

Konsep dasar slow release adalah pengaturan pelepasan bahan aktif dari mikrokapsul dengan pelapisan dari bahan semi permeable yang tidak larut dalam air atau bahan berpori yang permeable. Pengaturan ketebalan dinding mikrokapsul dapat digunakan untuk mengendalikan kecepatan difusi bahan aktif dari mikrokapsul. Mikrokapsul dengan bahan inti pestisida diazinon dibuat dengan metode insitu polimerisasi, menggunakan melamin, urea, dan formaldehid sebagai bahan dinding mikrokapsul. Polimerisasi dilakukan pada suhu 50˚C, pH 3, dengan waktu homogenisasi 30 menit dan waktu mikroenkapsulasi 2 jam. Pengujian kecepatan pelepasan pestisida dilakukan dengan merendam sejumlah mikrokapsul melamin urea formaldehid (MUF) dalam aquades dengan pH yang bervariasi dan ketebalan dinding mikrokapsul yang berbeda. Pada penelitian ini, diameter mikrokapsul MUF diperoleh pada kisaran 50 sampai dengan 160 μm. Tanpa penambahan surfaktan, hasil mikrokapsul memiliki ketebalan 13,8 μm. Sedangkan dengan penambahan SDS dan PVA tebal dinding mikrokapsul yang dihasilkan mengalami penurunan sebesar 45%, yaitu menjadi 7,55 μm. Pada mikrokapsul dengan ketebalan 13,8 μm, kecepatan pelepasan pestisida berada pada kisaran 0,52 x 10-6 sampai dengan 1,69 x 10-6 mg/cm2·s. Sedangkan pada mikrokapsul dengan ketebalan 7,55 μm, kecepatan pelepasan diazinon meningkat sebesar 74%, yaitu berada pada kisaran 0,66 x 10-6 sampai dengan 3,4 x 10-6 mg/cm2·s. Kata kunci : slow release, mikrokapsul melamin urea formaldehid, diazinon The basic concept of slow release is to control the active ingredient release from microcapsules by means of coating made from either water-insoluble, semi permeable or porous permeable materials. By designing microcapsules wall thickness, the diffusion rate of active ingredient can be controlled. Microcapsules containing diazinon pesticides as a core material have been prepared by in-situ polymerization using melamin urea formaldehyde prepolymer as the wall material. The polymerization had been done at 50 °C and pH 3, with homogenization time of 30 minutes, and microencapsulation time of 2 hours. To measure pesticide release rate, a number of Melamine Urea Formaldehyde (MUF) microcapsules were soaked in aquadest at various pH and microcapsules wall thicknesses. In this study, the diameter of MUF microcapsules ranged from 50 to 160 μm. Without surfactant addition, the microcapsule wall thickness was 13.8 μm, but by adding SDS and PVA the wall thickness of microcapsule decreased by 45% i.e. around 7.55 μm. For microcapsules with wall thickness of 13.8 μm, the pesticide releasing rate ranged from 0.52 x 10-6 to 1.69 x 10-6 mg/cm2·s. On the other side, the microcapsules with wall thickness of 7.55 μm the pesticide releasing rate dramatically increased by 74% ranged from 0.66 x 10-6 to 3.4 x 10-6 mg/cm2·s. Keywords: slow release, melamine urea formaldehyde microcapsules, diazinon.
Modifikasi Sodium Lignosulfonat Melalui Epoksidasi Minyak Biji Kapuk dan Penambahan Kosurfaktan Muhammad Khoirul Anam; Suryo Purwono; Supranto
Jurnal Rekayasa Proses Vol 9, No 2 (2015)
Publisher : Departemen Teknik Kimia Fakultas Teknik Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.31032

Abstract

The objective of this research is to reduce the interfacial tension of sodium lignosulfonate (SLS). SLS formulation (1%) showed the interfacial tension of 2.34 mN/m. This value is still relatively large when compared to interfacial tention of required surfactant for enhanced oil recovery (EOR). The terms of surfactants that can be used in EOR must have ≤10-3 mN/m interfacial tension. The performance of SLS was expected to be improved by adding the epoxide compound and co-surfactants (1-octanol). Epoxide compound was made by reacting kapok oil with acetic acid and hydrogen peroxide with in-situ method. Temperature of epoxidation reaction was varied i.e. 60°C, 70°C and 80°C, while the time of reaction was varied from 15 to 90 minutes. The evaluation showed that equation of the reaction rate coefficient (k) for the epoxide was ????= 124,82 exp (−24,14/RT). The addition of the epoxide compound 0.5% w/w of the formulation SLS was able to reduce the interfacial tension value up to 9.95 x 10-2 mN/m. The addition of co-surfactant (1-oktanol) was varied between 0.1 and 0.4% of the total mass (SLS + epoxide + water formation). The lowest interfacial tension (2.43 x 10-3 mN/m) was obtained by co-surfactants addition of 0.2% w/w. Keywords: Sodium lignosulfonat, epoxidation kapok oil, co-surfactant, interfacial tension, enhanced oil recovery Penelitian ini bertujuan untuk menurunkan tegangan antarmuka dari sodium lignosulfonat (SLS). Pengukuran tegangan antarmuka yang telah dilakukaan pada formulasi sodium lignosulfonat atau SLS (1%) memiliki nilai tegangan antarmuka sebesar 2,34 mN/m. Nilai tegangan antarmuka dari SLS ini masih relatif besar jika dibandingkan dengan syarat surfaktan untuk perolehan kembali minyak bumi atau enhanced oil recovery (EOR). Syarat surfaktan sebagai agen EOR adalah memiliki nilai tegangan antarmuka sebesar ≤10-3 mN/m. Kekurangan dari SLS diharapkan dapat diperbaiki dengan penambahan senyawa epoksida dan kosurfaktan (1-oktanol). Senyawa epoksida dibuat dengan mereaksikan sabun minyak biji kapuk dengan asam asetat dan hidrogen peroksida secara insitu. Reaksi epoksidasi divariasikan pada suhu 60oC, 70oC, dan 80oC, sedangkan waktu reaksi divariasikan pada rentang 15 dan 90 menit. Persamaan konstanta laju reaksi untuk epoksidasi diperoleh sebesar ????= 124,82 exp (−24,14/RT). Penambahan senyawa epoksida 0,5% w/w pada formulasi SLS mampu menurunkan nilai Tegangan antarmuka hingga 9,95x10-2 mN/m. Penambahan kosurfaktan 1-oktanol divariasikan antara 0,1–0,4% dari massa total formulasi utama (SLS+Epoksida+Air Formasi). Nilai tegangan antarmuka terkecil diperoleh pada penambahan kosurfaktan sebanyak 0,2% w/w, yaitu sebesar 2,43x10-3 mN/m. Kata kunci: Sodium lignosulfonat, epoksidasi, minyak biji kapuk, kosurfaktan, tegangan antarmuka, enhanced oil recovery