Alwi Gery Agustan Siregar
Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Jl. Almamater, Padang Bulan, Medan 20155, Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Synthesis and Characterization of Sodium Silicate Produced from Corncobs as a Heterogeneous Catalyst in Biodiesel Production Alwi Gery Agustan Siregar; Renita Manurung; Taslim Taslim
Indonesian Journal of Chemistry Vol 21, No 1 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.53057

Abstract

In this study, silica derived from corncobs impregnated with sodium hydroxide to obtain sodium silicate was calcined, prepared, and employed as a solid base catalyst for the conversion of oils to biodiesel. The catalyst was characterized by X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope Energy Dispersive X-Ray Spectroscopy (SEM-EDS), and Brunauer-Emmet-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. Gas Chromatography-Mass Spectrometry (GC-MS) was used to characterize the biodiesel products. The optimum catalyst conditions were calcination temperature of 400 °C for 2 h, catalyst loading of 2%, and methanol: oil molar ratio of 12:1 at 60 °C for 60 min, that resulted in a yield of 79.49%. The final product conforms to the selected biodiesel fuel properties of European standard (EN14214) specifications. Calcined corncob-derived sodium silicate showed high potential for use as a low-cost, high-performance, simple-to-prepare solid catalyst for biodiesel synthesis.
Synthesis and Characterization of Polystyrene Sulfonic Acid from Expanded Polystyrene Foam as a Catalyst in the Synthesis of Triacetin Renita Manurung; Rosdanelli Hasibuan; Fatimah Batubara; Handy Inarto; Alwi Gery Agustan Siregar; Auryn Saputra
Indonesian Journal of Chemistry Vol 21, No 5 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.60559

Abstract

In Indonesia, the composition of waste has gradually changed over time. To reduce expanded polystyrene (EPS) foam waste, we converted it into a heterogeneous acid catalyst, namely Polystyrene Sulfonic Acid (PSSA). The catalyst was then used in an esterification reaction to generate triacetin. In this research, the synthesis of PSSA was performed using a sulfonation reaction with silver sulfate (Ag2SO4) as the catalyst. Based on FTIR analysis, the sulfonation reaction was successful. The use of 0.5% and 1% catalysts led to a significant increase in the degree of sulfonation of PSSA, while there was a relatively constant increase when using 1.5–2.5% catalysts. The highest degree of sulfonation (78.63%) was achieved when the reaction was performed using 2% Ag2SO4 catalyst for 25 min. The PSSA with the highest degree of sulfonation was characterized using X-Ray Diffraction (XRD), SEM-EDX, and BET-BJH. This PSSA had a semi-crystalline structure with a crystallinity of 73.83%, a particle size of 1.75 nm, mesoporous pores with a radius of 16.984 Å, and a sulfur content of 15% (% mass).