Claim Missing Document
Check
Articles

Found 2 Documents
Search

TRANSESTERIFICATION OF DEGUMMED PALM OIL (DPO) TO PRODUCE PALM BIODIESEL BY USING LIPOZYME TL IM AS BIOCATALYST Aira Darusmy; Nur Sri Rahayu; Renita Manurung
Jurnal Teknik Kimia USU Vol. 4 No. 1 (2015): Jurnal Teknik Kimia USU
Publisher : Talenta Publisher (Universitas Sumatera Utara)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1252.935 KB) | DOI: 10.32734/jtk.v4i1.1453

Abstract

Biodiesel is usually synthesis ​​by transesterification of triglycerides and alcohols in the presence of an acid or an alkaline catalyst but it could produce a chemical waste process. An alternative process is using biocatalyst such as enzyme to synthesis biodiesel that couldn’t produce chemical waste process. In this research, the synthesis of biodiesel from degummed palm oil (DPO) and methanol as acyl donor has been investigated with using of Lipozyme as biocatalyst. The purpose of this experiment is to examine the effect of the temperature and the amount of biocatalyst for the synthesis of biodiesel that produced from palm oil and examine the effect of the use of methanol to the lipase enzyme activity in catalyzing the synthesis of biodiesel through transesterification reaction. The variables in this research are the amount of biocatalyst and temperature, and their responses with yield conversion of biodiesel are representated using response surface methodology (RSM) with Minitab software. The reactants and products are analyzed using Gas Chromatography Mass Spectrometry (GCMS). Yield raging from 10-79 % are achieved in 15 hours reaction time. The variable effect of process for obtaining yield can be known from the temperature gives negative result about 0,6738 for the formation of biodiesel product. Afterwards the amount of biocatalyst gives positive result about 22,8091 and interaction between temperature and the amount of biocatalyst give negative result. The results show that the most influential variable is the amount of biocatalyst. Therefore, this experiment would need further investigation works and analysis and reuse of lipozyme as biocatalyst on the run which obtained the highest yield. The highest yield is obtained at a reaction temperature of 45 ° C and the amount of catalyst by 30%. In the reuse of lipozyme, can be repeated four times and obtained the total of the decrease in yield of 77%.
HIDROLISIS HASIL DELIGNIFIKASI TANDAN KOSONG KELAPA SAWIT DALAM SISTEM CAIRAN IONIK CHOLINE CHLORIDE Gendish Yoricya; Shinta Aisyah Putri Dalimunthe; Renita Manurung; Nimpan Bangun
Jurnal Teknik Kimia USU Vol. 5 No. 1 (2016): Jurnal Teknik Kimia USU
Publisher : Talenta Publisher (Universitas Sumatera Utara)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (274.501 KB) | DOI: 10.32734/jtk.v5i1.1521

Abstract

Palm Empty Fruit Bunches (TKKS) was the waste which has a fairly high content of lignocelluloses. Meanwhile, TKKS has not been utilize optimally. With a cellulose content of 45%-50%, TKKS then potentially be used as raw material for bioethanol. In the process of production bioethanol, delignification of lignocellulose the first phase was conducted to dissolve ligament between cellulose, hemicellulose and lignin. In this research, delignification process was carried out using NaOH in the ionic liquid system and without ionic liquids. The purpose of this research was to find out the highest content of cellulose which contained in the TKKS and to determine the hydrolysis of delignification results on palm empty fruit bunches and the best hydrolysis conditions was obtained at the hydrolysis process in the choline chloride ionic liquid system. Delignification process were performed using ionic liquids choline chloride (ChCl) in variety of cooking time with amount different ChCl. This research used TKKS powder cooked at a temperature 130 °C with a variety of cooking time 30, 60, and 90 minutes and the variation of ChCl 10%, 15% and 20% weight of TKKS. Delignification research results used ChCl obtained highest content of cellulose was 40,33%, hemicellulose 20,28%, and lignin 3,62% in cooking treatment 90 minutes and 15% ChCl. While delignification without ChCl obtained highest content of cellulose is 24,98%, hemicellulose 8,25%, and lignin 18,99% in cooking treatment 90 minutes. Delignification process using ChCl be able increase the degree of delignification as big as 61,45%. In the hydrolisis process, the main raw material used cellulose of delignification TKKS result, choline chloride, sulfatl acid, and distilled water. The hydrolysis stage in this research was carried out at temperature 105 0C, catalyst (H2SO4) 10% (w / w) cellulose, ChCl 10%, 15%, and 20% (w / w) cellulose and it was stirred at constant speed 120 rpm with reaction time of 30, 60 and 90 minutes. The result in the hydrolysis stage using ionic liquid obtained glucose. LUFF method analysis showed the maximum result of glucose 37.96% with the best conditions in reaction time 90 minutes and the amount of choline chloride 20%.