Claim Missing Document
Check
Articles

Found 4 Documents
Search

Evaluation of Product Quality Improvement Against Waste in the Electronic Musical Instrument Industry Hendra Hendra; Indra Setiawan; Hernadewita Hernadewita; Hermiyetti Hermiyetti
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 7, No 3 (2021): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v7i3.21904

Abstract

Customer satisfaction is one of the main factors that must be considered by every company to compete in the global market. One way to increase customer satisfaction is to reduce defective products and reduce waste. This method is a continuous improvement that must be carried out by every manufacturing industry. The Musical Instrument Industry is one of the producers of electronic musical instruments such as pianos. The production process has occurred several problems such as low product quality and waste (ineffective processes, inappropriate layouts, overproduction, and poor production quality). The biggest problem with this company is the large number of products that are not following company standards, such as not achieving quality standards and production not achieving targets. To improve the quality of its production, companies need to make the production process streamlined so that it will create a more effective and efficient production line. A balance between effectiveness and efficiency can be made by reducing waste. Lean Six Sigma is an approach that focuses on improving quality and eliminating waste and sustainable strategy to improve product quality while reducing waste. The company's strategy to be able to compete in the global market must be able to improve product quality and eliminate waste. This study aims to improve product quality and analyze the effect of improving quality on waste. The method used is Lean Six Sigma with dynamo stages, namely pre-study, measurement, analysis, and implementation. The results showed that the quality of the product had increased. Quality improvement has a significant effect on waste.
Analisis tegangan pada struktur mesin pencacah plastik menggunakan metode elemen hingga (MEH) dan uji kerja mesin pencacah plastik Hendra Hendra; A. Indriani; Hernadewita Hernadewita; A. Mardian; N. Kholik; Rispandi Rispandi; Y. Suhartini
METAL: Jurnal Sistem Mekanik dan Termal Vol 5, No 1 (2021): Jurnal Sistem Mekanik dan Termal (METAL)
Publisher : Department of Mechanical Engineering, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1519.13 KB) | DOI: 10.25077/metal.5.1.9-16.2021

Abstract

Plastic is a non-biodegradable material. Plastic waste must be processed using processing machines or other processing methods such as processing plastic into fuel and other forms of products. Plastic waste processing machines are available in plastic shredding and injection machines. The performance of plastic shredding and injection machines depends on the plastic waste treated, the shape of the cutting edge, the structural strength of the plastic shredding and injection machines and others. The strength of plastic shredding and injection machines can be calculated by means of simulation using the finite element method (FEM). This method will save costs, selection of materials and cutting edge shapes quickly and easily and soon. In this study, FEM was used to simulate the design strength of a plastic shredding and injection machines in the form of pressure and displacement, followed by the manufacture of plastic shredding and injection machines and the work test of plastic shredding and injection machines. From the simulation results using FEM, the maximum voltage and structural displacement of plastic cutting and injection machine is 4.57 MPa and 0.031 mm and work test showed the machine can cut 800 grams of plastic waste in 278 seconds with motor rotation of 176 rpm, current 6.8 A, active force. Electrical load 1214.4 watts and torque 44.74 lb.ft.
Perbandingan pembuatan produk menggunakan simulasi program CNC dan CNC Milling Hendra -; Y. Saputra; Putri -; Hernadewita -; Nasril -
METAL: Jurnal Sistem Mekanik dan Termal Vol 6, No 1 (2022): Jurnal Sistem Mekanik dan Termal (METAL)
Publisher : Department of Mechanical Engineering, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (536.777 KB) | DOI: 10.25077/metal.6.1.53-59.2022

Abstract

Perkembangan program Computer Numerically Controlled (CNC) Milling menggunakan simulasi sangat membantu proses pembuatan suatu produk dalam mengurangi kesalahan operator dan program yang dibuat sesuai dengan gambar tekniknya. Mesin CNC Milling bekerja untuk memotong dan membuat benda kerja merujuk ke 3 sumbu yaitu sumbu X, Y dan Z. Kesalahan pembuatan dan pemasukan program berupa pemosisian sumbu X, Y, dan Z dapat menyebabkan karakteristik geometrik benda kerja tidak tercapai (bentuk, dimensi, posisi dan kekasaran permukaan.) Kombinasi CAD/CAM sangat mendukung proses pembuatan produk yang memiliki ketelitian dan ketepatan yang sesuai dengan gambar desain sehingga karakteristik geometric benda kerja dapat dipenuhi. Kesalahan pembuatan program dan pemosisian sumbu X, Y dan Z dapat dapat diminimalkan dengan melakukan simulasi pengerjaan benda kerja tersebut seperti pemasukan kode-kode pemotongan benda kerja pada mesin CNC Milling (kode G dan M). Program simulasi yang dapat digunakan adalah Mastercam, swansoft simulation CNC (SSNC) dan lainnya. Penggunaan simulasi ini dapat membantu mempermudah dan mempersingkat waktu pembuatan program CNC Milling untuk produk yang akan dibuat dengan mendesain menggunakan CAD dan dilanjutkan dengan pembuatan program serta menginput program tersebut ke dalam MCU CNC Milling. Dalam paper ini focus menggunakan program simulasi Mastercam dan Swansoft CNC (SSCNC) untuk membuat produk milling dengan dimensi diameter luar 170, 16 mm dan diameter dalam 160,16 mm menggunakan material dural. Dimana hasil pembuatan simulasi program Mastercam dan SSCNC dibandingkan dengan proses pemotongan menggunakan mesin CNC Milling Leadwell V-30. Waktu proses pemesinan secara teoritis adalah 10,61 menit. Dari hasil simulasi dan pemesinan benda kerja menggunakan mesin CNC Milling Leadwell V-30 didapatkan waktunya adalah 9,53 menit untuk simulasi dan 10,56 menit untuk eksperimen. Dengan listing program yang sama antara CNC Leadwell V-30 dan simulasi SSCNC didapatkan selisih waktu pemesinan sebesar 0,09 menit.
Applying Programmable Logic Control (PLC) for Control Motors, Blower and Heater in the Rubber Drying Processing Hendra Hendra; Pebriyanto S; Hernadewita Hernadewita; Hermiyetti Hermiyetti; Yoserizal Yoserizal
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 7, No 1 (2021): April
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v7i1.20514

Abstract

Rubber is the largest commodity in Indonesia. Rubber is traditionally processed and dried using bamboo hangers, manual arrangement of bamboo drying rubber, heat from firewood for drying chambers and large areas. This drying process has disadvantages, namely inconsistent drying time, non-uniform room temperature, unequal product quality, and unfriendly drying process. The solution is to overcome the automatic rubber dryer machine that is made using PLC to get the motor operating system for automatic rubber handling in the drying chamber, fixed drying temperature, small drying area, and fast-drying time. The experimental method is used for the automatic rubber drying process with PLC to control the movement of rubber in/out of the chamber dryer, heater, and blower for distribution temperature and other components. From the test results, it is found that the control system can work well at the voltage of each component of 220V, such as a sensor with a current of 0.21A and a stop time of 0.01s-0.3 seconds. The motor, heater, and blower are active (ON) at 220V with a current of 8.27A. The heater requires a current of 1.99A for active (ON) and an active blower (ON) with a current of 0.75A.