Claim Missing Document
Check
Articles

Found 4 Documents
Search

DEA-based on optimization of inductive coupling for powering implantable biomedical devices Brahim Ouacha; Hamid Bouyghf; Mohammed Nahid; Said Abenna
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 3: September 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i3.pp1558-1567

Abstract

Inductive coupling wireless power transfer (WPT) is one of the best technologies for powering implantable microelectronic devices (IMD). A wireless power transfer system’s important elements (indicators) are power transfer efficiency (PTE) and power delivered to load (PDL). The key characteristics of WPT are the size of the transmitting (Tx) and receiving (Rx) coils, the operating frequency, and the separation distance between the two parts of the system. The main goal of this research is to use the differential evolution algorithm (DEA) to optimize a wireless energy transfer system in order to maximize the PTE and PDL. By comparing the results acquired by the proposed technique to those obtained by other methodologies, we were able to validate the results obtained by the suggested method. With the aim of raising the PTE and PDL. Using this metaheuristic approach, we were able to improve WPT’s critical parameters. For is, a PTE of 95% and 136 mW of power delivered to the load for a 13 cm separation distance.
Design and miniaturization of a microsystem to power biomedical implants using grey wolf optimizer-based cuckoo search algorithm Brahim Ouacha; Hamid Bouyghf; Mohammed Nahid; Said Abenna
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 2: April 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i2.pp1329-1337

Abstract

One of the greatest techniques, inductive coupling is frequently utilized in the biomedical sector for wireless energy transfer to implants. The aim of this article is to develop and analyze the effect of inductor geometrical characteristics, distance between transmitter (TX) and receiver (RX) and also the operating frequency on the wireless power transfer system, using grey wolf optimizer-based cuckoo search (GWO-CS) algorithm. Power transfer efficiency (PTE), power provided to load, and other critical components must all be improved or maximized and miniaturaze the microsystem proposed. The invention, design, and optimization of coils square spirals in a wireless energy transfer system using a resonant inductive link are the emphasis of this paper. The GWO-CS approach is evaluated to existing methods, demonstrated by simulations and to demonstrate the effectiveness of the suggested strategy.
Bio-inspired intelligence for minimizing losses in substrate integrated waveguide Souad Akkader; Hamid Bouyghf; Abdennaceur Baghdad
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2837-2846

Abstract

This paper presents a study of various types of losses in substrate-integrated waveguides (SIW) using a genetic algorithm. Three main types of losses are considered and examined separately: conductor loss, dielectric loss, and radiation loss. Furthermore, the current analysis allows for a physical understanding of the loss impacts as well as the creation of design guidelines to reduce losses at 10 GHz frequency while keeping the miniaturized size of the SIW. Validation results obtained using the software Ansys HFSS, verify that the attenuation constant of the SIW can be significantly reduced to  0.4 dB/m, the Insertion loss S21 to -0.2 dB and the return loss to -38 dB if the geometric parameters are chosen properly. This study enables us to identify the source of losses in a SIW and, as a result, eliminate any type of dispersion. That demonstrates the usability of SIW technologies in the design of microwave circuits used in Internet of things applications.
Optimal interdigitated electrode sensor design for biosensors using multi-objective particle-swarm optimization Issa Sabiri; Hamid Bouyghf; Abdelhadi Raihani
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 3: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i3.pp2608-2617

Abstract

Interdigitated electrodes (IDEs) are commonly employed in biological cellular characterization techniques such as electrical cell-substrate impedance sensing (ECIS). Because of its simple production technique and low cost, interdigitated electrode sensor design is critical for practical impedance spectroscopy in the medical and pharmaceutical domains. The equivalent circuit of an IDE was modeled in this paper, it consisted of three primary components: double layer capacitance, Cdl, solution capacitance, CSol, and solution resistance, RSol. One of the challenging optimization challenges is the geometric optimization of the interdigital electrode structure of a sensor. We employ metaheuristic techniques to identify the best answer to problems of this kind. multi-objective optimization of the IDE using multi-objective particle swarm optimization (MOPSO) was achieved to maximize the sensitivity of the electrode and minimize the Cut-off frequency. The optimal geometrical parameters determined during optimization are used to build the electrical equivalent circuit. The amplitude and phase of the impedance versus frequency analysis were calculated using EC-LAB® software, and the corresponding conductivity was determined.