Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Kappa Journal

Analysis of Solar Flux and Sunspot Correlation Case Study: A Statistical Perspective Ruben Cornelius Siagian; Lulut Alfaris; Budiman Nasution; Habibi Azka Nasution
Kappa Journal Vol 7 No 1 (2023): April
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/kpj.v7i1.12238

Abstract

This analysis examines the relationship between the number of solar flares and the number of sunspots in 2005 using 11 observations in months 2 to 12. The number of solar currents measures the intensity of the radiation emitted by the Sun, while the number of sunspots measures the number of sunspots on the surface of the Sun. Multivariate linear regression analysis was used to analyze the relationship between Solar Current Rate and Number of Sunspots. The results of the analysis show that the coefficient of the Amount of Solar Current is 1.1239 with a significant t value of 2.510 (probability that there is no effect on the Number of Sunspots is 3.33%). The linear regression model has good results with an F-statistic value of 6.301 and a p-value of 0.0333, with an R-squared value of 0.4118 which indicates that 41.18% of the variation in the number of sunspots is influenced by variations in the amount of solar currents. The corrected R-squared value is 0.3464 indicating that there are still variations in the number of sunspots that cannot be explained by variations in the number of solar currents. ARIMA analysis results show an MA coefficient of 0.7351 with an average value of 45.9542 and a s.e value of 0.2590 and 6.1550 respectively. The AIC, AICc, and BIC values are 92.97, 96.4, and 94.16. The error results in the training set show that the ME value is 0.2615561, the RMSE value is 12.16969, the MAE value is 9.03306, the MPE value is -15.14689, the MAPE value is 30.42013, and the MASE value is 0.674109. The ACF1 value in the exercise set is 0.0808969.
Separation of Variables Method in Solving Partial Differential Equations and Investigating the Relationship between Gravitational Field Tensor and Energy-Momentum Tensor in Einstein's Theory of Gravity Ruben Cornelius Siagian; Lulut Alfaris; Arip Nurahman; Aldi Cahya Muhammad; Ukta Indra Nyuswantoro; Budiman Nasution
Kappa Journal Vol 7 No 2 (2023): Agustus
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/kpj.v7i2.20921

Abstract

This research delves into the study of partial differential equations (PDEs) and gravitational fields in spacetime. It focuses on solving PDEs using the Separation of Variables method and explores the relationship between the gravitational field tensor and the energy-momentum tensor, leading to the final equation for the gravitational field tensor. The research also investigates Einstein's theory of gravity and the energy-momentum tensor integral, providing the general solution for the gravitational potential and its implications. Additionally, the mean integration of the gravitational wave tensor is analyzed, yielding an expression for the tensor strain of gravitational waves over an infinitely long period. The components of the gravitational wave tensor and their effect on gravitational sources are examined. Furthermore, the propagation of electromagnetic fields in spacetime is studied using the Retarded Green's Function. The primary objectives of this research are to understand and explore mathematical techniques for solving PDEs and analyzing gravitational fields and their interactions in spacetime. The integration of multiple theoretical concepts related to PDEs, gravitational fields, and electromagnetic fields enhances our understanding of fundamental physics principles. This contributes to the advancement of theoretical physics and opens avenues for potential practical applications, such as gravitational wave detection and electromagnetic field propagation in complex media. In conclusion, this research provides valuable insights into fundamental physics principles and fosters a deeper understanding of their interconnections and implications