Ukta Indra Nyuswantoro
Department of Structure Engineering, Asiatek Energi Mitratama, Jakarta, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Physics Visualization of Schwarzschild Black Hole through Graphic Representation of the Regge-Wheeler Equation using R-Studio Approach Budiman Nasution; Winsyahputra Ritonga; Ruben Cornelius Siagian; Lulut Alfaris; Aldi Cahya Muhammad; Ukta Indra Nyuswantoro; Gendewa Tunas Rancak
Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Vol. 20 No. 1 (2023): Sainmatika : Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam
Publisher : Universitas PGRI Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31851/sainmatika.v20i1.11845

Abstract

This study aims to visualize the vibrations of black holes using the Regge-Wheeler equation in Cartesian coordinates. Black holes are astrophysical objects with extremely strong gravity, and understanding the vibrations around them provides insights into the nature and structure of black holes. The Regge-Wheeler equation is used to model these vibrations. In this study, the goal is to generate visual images that visualize the vibrations of black holes, including their frequencies, amplitudes, and possible vibration modes. Complex mathematical and computational methods were employed to create these visualizations. The findings of this research result in an intuitive and accurate visualizations of black hole vibrations. By observing the patterns and distributions of vibrations in visual form, complex concepts can be more easily understood and interpreted. These visualizations provide a better understanding of the characteristics of black hole vibrations and can serve as learning and comprehension tools for scientists and researchers. The accomplishment of this research addresses a deficiency in prior studies that lacked informative and intuitive visualizations of black hole vibration phenomena. The visualizations produced in this study make a significant contribution to our understanding of black hole vibration phenomena. The enhanced visualizations allow researchers to perceive patterns and distributions of vibrations more clearly, paving the way for new insights into the nature of black holes. The implications of this research are an improved understanding of black hole vibrations and a broader dissemination of knowledge about this phenomenon to the general public. The generated images can help communicate complex concepts more effectively, enhancing awareness and interest in black hole research.