Ahlam R. Khekan
University of Information Technology and Communications

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Artificial intelligence techniques over the fifth generation mobile networks: a review Ashwaq N. Hassan; Sarab Al-Chlaihawi; Ahlam R. Khekan
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 1: October 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i1.pp317-328

Abstract

A well Fifth generation (5G) mobile networks have been a common phrase in recent years. We have all heard this phrase and know its importance. By 2025, the number of devices based on the fifth generation of mobile networks will reach about 100 billion devices. By then, about 2.5 billion users are expected to consume more than a gigabyte of streamed data per month. 5G will play important roles in a variety of new areas, from smart homes and cars to smart cities, virtual reality and mobile augmented reality, and 4K video streaming. Bandwidth much higher than the fourth generation, more reliability and less latency are some of the features that distinguish this generation of mobile networks from previous generations.  Clearly, at first glance, these features may seem very impressive and useful to a mobile network, but these features will pose serious challenges for operators and communications companies. All of these features will lead to considerable complexity. Managing this network, preventing errors, and minimizing latency are some of the challenges that the 5th generation of mobile networks will bring. Therefore, the use of artificial intelligence and machine learning is a good way to solve these challenges. in other say, in such a situation, proper management of the 5G network must be done using powerful tools such as artificial intelligence. Various researches in this field are currently being carried out. Research that enables automated management and servicing and reduces human error as much as possible. In this paper, we will review the artificial intelligence techniques used in communications networks. Creating a robust and efficient communications network using artificial intelligence techniques is a great incentive for future research. The importance of this issue is such that the sixth generation (6G) of cellular communications; There is a lot of emphasis on the use of artificial intelligence.
Big transfer learning for automated skin cancer classification Zinah Mohsin Arkah; Dalya S. Al-Dulaimi; Ahlam R. Khekan
Indonesian Journal of Electrical Engineering and Computer Science Vol 23, No 3: September 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v23.i3.pp1611-1619

Abstract

Skin cancer is an example of the most dangerous disease. Early diagnosis of skin cancer can save many people’s lives. Manual classification methods are time-consuming and costly. Deep learning has been proposed for the automated classification of skin cancer. Although deep learning showed impressive performance in several medical imaging tasks, it requires a big number of images to achieve a good performance. The skin cancer classification task suffers from providing deep learning with sufficient data due to the expensive annotation process and required experts. One of the most used solutions is transfer learning of pre-trained models of the ImageNet dataset. However, the learned features of pre-trained models are different from skin cancer image features. To end this, we introduce a novel approach of transfer learning by training the pre-trained models of the ImageNet (VGG, GoogleNet, and ResNet50) on a large number of unlabelled skin cancer images, first. We then train them on a small number of labeled skin images. Our experimental results proved that the proposed method is efficient by achieving an accuracy of 84% with ResNet50 when directly trained with a small number of labeled skin and 93.7% when trained with the proposed approach.
Classification of electroencephalography using cooperative learning based on participating client balancing Maytham N. Meqdad; Saif O. Husain; Alyaa Mohammed Jawad; Seifedine Kadry; Ahlam R. Khekan
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4692-4699

Abstract

Modern technologies are widely used today to diagnose epilepsy, neurological disorders, and brain tumors. Meanwhile, it is not cost-effective in terms of time and money to use a large amount of electroencephalography (EEG) data from different centers and collect them in a central server for processing and analysis. Collecting this data correctly is challenging, and organizations avoid sharing their and client information with others due to data privacy protection. It is difficult to collect these data correctly and it is challenging to transfer them to research centers due to the privacy of the data. In this regard, collaborative learning as an extraordinary approach in this field paves the way for the use of information repositories in research matters without transferring the original data to the centers. This study focuses on the use of a heterogeneous client balancing technique with an interval selection approach and classification of EEG signals with ResNet50 deep architecture. The test results achieved an accuracy of 99.14 compared to similar methods.