Muhammad Amir As'ari
School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Covid-19 Detection From Chest X-Ray Images: Comparison Of Well-Established Convolutional Neural Networks Models Muhammad Amir As'ari
International Journal of Advances in Intelligent Informatics Vol 8, No 2 (2022): July 2022
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Coronavirus disease 19 (Covid-19) is a pandemic disease that has already killed hundred thousands of people and infected millions more. At the climax disease Covid-19, this virus will lead to pneumonia and result in a fatality in extreme cases. COVID-19 reveals radiological signatures that can be easily detected using chest X-rays, which distinguishes it from other types of pneumonic disease.  Recently, there are several studies using the CNN model only focused on developing binary classifier that classify between Covid-19 and normal chest X-ray. However, no previous studies have ever made a comparison between the performances of some of the established pre-trained CNN models that involving multi-classes including Covid-19, Pneumonia and Normal chest X-ray. Therefore, this study focused on formulating an automated system to detect Covid-19 from chest X-Ray images by four established and powerful CNN models AlexNet, GoogleNet, ResNet-18 and SqueezeNet and the performance of each of the models were compared.  A total of 21,252 chest X-ray images from various sources were pre-processed and trained for the transfer learning-based classification task, which included Covid-19, bacterial pneumonia, viral pneumonia, and normal chest x-ray images. In conclusion, this study revealed that all models successfully classify Covid-19 and other pneumonia at an accuracy of more than 78.5%, and the test results revealed that GoogleNet outperforms other models for achieved accuracy of 91.0%, precision of 85.6%, sensitivity of 85.3%, and F1 score of 85.4%.