p-Index From 2019 - 2024
0.751
P-Index
This Author published in this journals
All Journal Jurnal Teknik Mesin
Claim Missing Document
Check
Articles

Found 4 Documents
Search

SIMULASI UJI BENDING PADA SHAFT GENERATOR AWING 500 WATT DENGAN MATERIAL ASTM A36 MENGGUNAKAN SOFTWARE CAD Ray Raynaldi; Abdul Hamid; Alief Avicenna Luthfie
Jurnal Teknik Mesin Vol 11, No 2 (2022)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/jtm.v11i2.14156

Abstract

Abstrak--Shaft adalah komponen mesin yang berfungsi untuk mentransmisikan daya. Parameter yang diperhatikan dalam perancangan poros pada generator pada turbin angin adalah berat sudu, torsi yang dihasilkan sudu, berat rotor dan gaya sentrifugal. Analisis yang dilakukan pada poros adalah analisis uji lentur dan analisis uji puntir. Material yang digunakan pada poros generator 500 W adalah Baja Ringan (ASTM A36) . Perancangan dilakukan dengan menggunakan metode elemen hingga menggunakan software CAD. Analisis desain yang kemudian dianalisis dengan nilai faktor keamanan desain poros yang diperoleh dari hasil simulasi. poros desain dari hasil simulasi dengan faktor keamanan. Kata kunci: Shaft,Material,CAD
ANALISIS KADAR GAS EMISI CO-FIRING PADA BOILER PLTU INDRAMAYU MENGUNAKAN CAMPURAN SAWDUST Premadi Setyoko; Alief Avicenna Luthfie
Jurnal Teknik Mesin Vol 11, No 3 (2022)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/jtm.v11i3.16214

Abstract

Abstrak--Kadar NOx dan CO2 pada PLTU Eksisting di Pulau jawa tidak sesuai dengan aturan pemerintah tentang baku mutu emisi gas buang industri dan efek gas rumah kaca yang ada di Indonesia dan dunia. Kadar gas emisi buang juga harus ditekan sesuai dengan adanya kesepakatan Paris agreement tahun 2021 tentang penurunan nilai ambang batas carbon yang dihasilkan oleh pembangkit listrik berbahan bakar batu bara. Sehingga tujuan dari penelitian ini adalah dapat mengevaluasi komposisi campuran sawdust yang optimal agar dapat dilakukan evaluasi hasil emisi gas buang menggunakan alat Ukur CEMS pada laboratorium lingkungan PLTU Indramayu setelah menggunakan campuran sawdust yang dibakar untuk mengurangi emisi gas buang sesuai standart baku mutu baik nasional dan internasional. Pengujian dilakukan dengan cara eksperimental di PLTU eksisting tipe pulverized coal boiler di PLTU indramayu. Adapun tipe pembakarannya direct firing coal pulverizing system dengan primary cold air pada kecepatan medium dan metode yang digunakan dalam uji co-firing adalah direct co-firing bahan bakar batu bara dan sawdust dicampur di coal yard kemudian ditransfer ke bunker untuk di bakar. Pengujian co-firing dengan persentase campuran sawdust 5% di PLTU Indramayu 3x330 MW unit 2 mendapatkan hasil evaluasi pengujian teknik mixing bahan bakar batubara dan biomassa bisa tercampur dengan baik, Kandungan volatile matter pada biomassa yang lebih tinggi dari batubara juga terpantau aman pada mill outlet temperature FEGT co-firing biomass rata rata cenderung turun 2,80C dibanding kondisi eksisting 100%. Besarnya emisi gas buang baik SO2 maupun NOx pada pengujian Co-firing 5% sawdust di PLTU Indramayu Emisi SO2 turun dari 120,84 mg/Nm3 menjadi 106,3 mg/Nm³, Emisi NOx turun dari 365,41 mg/Nm3 menjadi 360,46 mg/Nm³ memenuhi batas baku mutu emisi KLHK (550 mg/Nm³) Kata kunci: Co-firing, Boiler Pulverizer Coal, Sawdust, Emisi gas buang
Analisis Energi Kipas Aksial untuk Menghasilkan Kecepatan Angin 50 m/s pada Low Speed Wind Tunnel Mega Esti Suci Sayekti; Alief Avicenna Luthfie
Jurnal Teknik Mesin Vol 11, No 3 (2022)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/jtm.v11i3.16258

Abstract

Terowongan angin (wind tunnel) adalah peralatan yang digunakan untuk melakukan pengujian aerodinamika terhadap sebuah model, seperti pesawat atau mobil. Pada perancangan wind tunnel ini menggunakan tipe open-circuit low speed wind tunnel yang memiliki kelemahan yaitu aliran udara pada test section yang dapat berubah dari laminar ke turbulen. Pada perancangan ini diperlukan analisis kipas hisap agar didapatkan daya motor yang efisien pada test section yang berdimensi 0,42m x 0,42m x 0,84m dengan kecepatan aliran udara maksimal sebesar 50 m/s. Analisis ini bertujuan untuk mendapatkan daya minimal motor untuk menggerakan kipas aksial, kapasitas udara (CHM) di test section, dan mendapatkan nilai koefisien loss yang diperlukan untuk perhitungan daya motor. Perhitungan tersebut diperoleh dari desain wind tunnel yang sudah ada. Pada analisis energi yang dilakukan pada desain wind tunnel Universitas Mercu Buana didapatkan CHM pada test section sebesar 31752 m3/s. Pada seriap bagian wind tunnel terjadi kerugian energi yaitu koefisien loss pada test section =0,0306; contraction cone =0,0157; diffuser =0,0533; settling chamber =0,0109; honeycomb =0,154 sehingga didapatkan = 0,2645; dan total pressure loss = 100,78 Pa. Dari total koefisien loss di wind tunnel didapatkan daya motor minimal untuk menggerakkan kipas aksial adalah 16233 watt atau setara dengan 22 HP.
PENENTUAN JENIS DRAFT TUBE BERDASARKAN NILAI HEAD RECOVERY DAN KINERJA TURBIN HYDROCOIL MENGGUNAKAN METODE COMPUTATIONAL FLUID DYNAMICS Fahmi Hidayat; Alief Avicenna Luthfie; Agung Wahyudi Biantoro
Jurnal Teknik Mesin Vol 12, No 1 (2023)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/jtm.v12i1.18270

Abstract

A Microhydro Power Plant (MHP) with hydrocoil turbine in Sukajaya Lembang Village, Bandung, West Java, has been successfully designed. However, the velocity of the water flow after exiting the hydrocoil turbine is still relatively high, so there is still a lot of wasted flow energy before it can be converted. Like other reaction turbines, the hydrocoil turbine requires a draft tube in order to maximize its energy conversion process. Thus, the purpose of this research is to determine the type of draft tube based on the head recovery value and performance of the hydrocoil turbine for the MHP system. This determination process involves 3 stages: 1) evaluation of the performance of the hydrocoil turbine that has been installed with three types of draft tubes, namely conical straight, curved elbow, and simple elbow, by Computational Fluid Dynamics (CFD), 2) calculation of the head recovery of the three types of draft tubes, and 3) determination of the best draft tube based on the head recovery value and performance of the hydrocoil turbine. In stage one, the type of analysis used is steady state with the SST k-ω turbulence model, to capture turbulence in the penstock pipe and near the turbine blades. As the results, the highest hydrocoil turbine efficiency with all three types of draft tubes installed, is at a rotational speed of N=1100 rpm. The highest efficiency for the hydrocoil turbine with conical straight, curved elbow, and simple elbow draft tubes are 90.48%, 90.18%, and 91.26%, respectively. Meanwhile, the head recovery at rotational speed N=1100 rpm for conical straight, curved elbow, and simple elbow draft tubes are 1.627 m, 1.866 m, and 4.097 m, respectively. Thus, the simple elbow draft tube is the best to use in this MHP system because it has the highest head recovery and efficiency values.