Claim Missing Document
Check
Articles

Found 2 Documents
Search

MULTI-DEPOT VEHICLE ROUTING PROBLEM WITH TIME WINDOW MENGGUNAKAN ADAPTIVE GENETIC ALGORITHM DENGAN FUZZY LOGIC CONTROLLER Fazarudin, Tri Kusnandi; Dwi Sulistiyo, Mahmud; Wulandari, Gia Septiana
Jurnal Teknologi Vol 8 No 2 (2015): Jurnal Teknologi
Publisher : Jurnal Teknologi, Fakultas Teknologi Industri, Institut Sains & Teknologi AKPRIND Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Multi-Depot Vehicle Routing Problem with Time Window (MDVRPTW) adalah permasalahan pencarian rute optimal bagi suatu penyuplai. Penyuplai tersebut perlu mengirimkan barang ke sejumlah pelanggan dengan menggunakan kendaraan yang terdapat pada sejumlah depot. Setiap pengiriman barang tersebut harus dilakukan dalam rentang waktu pelayanan yang ditentukan oleh setiap pelanggan. Kendaraan yang digunakan mempunyai batasan jumlah maksimal barang yang dapat dibawa, dan waktu maksimal kendaraan tersebut boleh digunakan. MDVRPTW merupakan salah satu variasi dari Vehicle Routing Problem (VRP). Terdapat berbagai algoritma yang telah digunakan untuk menyelesaikan permasalahan VRP. Beberapa algoritma tersebut adalah Genetic Algorithm (GA), Tabu Search, dan Adaptive GA dengan Artificial Bee Colony. GA dapat menyelesaikan permasalahan dalam waktu yang lebih singkat, tetapi rentan terjebak dalam optimum lokal. Salah satu strategi untuk mengurangi kemungkinan terjadinya hal tersebut adalah dengan membuat GA menjadi adaptif. Pada penelitian ini, MDVRPTW diselesaikan dengan GA. Untuk mengurangi kemungkinan GA untuk terjebak pada optimum lokal, parameter pada GA dibuat menjadi adaptif menggunakan Fuzzy Logic Controller (FLC). Dari hasil penelitian yang sudah dilakukan, penggunaan FLC pada GA dapat meningkatkan rata-rata kualitas solusi yang dihasilkan lebih baik dibandingkan dengan GA yang tidak menggunakan FLC.
Prediction of Basic Material Prices on Major Holidays Using Multi-Layer Perceptron Ihsan, Rivan Nur; Saadah, Siti; Wulandari, Gia Septiana
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 6, No 1 (2022): Januari 2022
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v6i1.3508

Abstract

The prediction of the price of basic necessities on major holidays in Indonesia, such as Eid al-Fitr, Christmas, New Year, Chinese New Year, and Eid al-Adha, is something that needs to be observed, because there are often movements in the prices of basic commodities that increase or decrease very drastically. One of the main ingredients experiencing this is eggs, which often experience a significant increase, so it is necessary to make observations in the form of predictions to keep control of fluctuations, especially before and after the big day occurs. In this study, predictions were made on the price of basic commodities on the big day. With the prediction of the cost of goods on the big day, it is hoped that related parties can be assisted in monitoring and stabilizing the movement of basic commodity prices on the market. In this study, a prediction system for the price of basic commodities was produced using the Multi-Layer Perceptron (MLP) method. This MLP method can predict time-series data that experiences a lot of fluctuation. In this prediction, MLP can make predictions on ten prices of basic commodities on major holidays every day. The results of this study were divided into three groups, namely Worst, Average, and Best. The division of these three groups separates which staple ingredients have the closest predictions to their actual values. The Worst group is the group whose prediction results are still quite far from the actual, the Average group which is close to the actual value, and the Best group which has the best results because it is very close to the actual value. With prediction results measured using MSE, the Worst group consisted of cooking oil (MSE 0.00197), beef (0.00186), rice (0.00118), and sugar (0.00100). Then the Average group consisted of eggs (0.00096), red chili (0.00085), chicken (0.00074), garlic (0.00062), and cayenne pepper (0.00056). Finally, the Best group only consisted of Shallots with an MSE of 0.00040.