Adam Pawlowski
Bialystok University of Technology Faculty of Electrical Engineering

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Trajectory optimization using learning from demonstration with meta-heuristic grey wolf algorithm Adam Pawlowski; Slawomir Romaniuk; Zbigniew Kulesza; Milica Petrovic
IAES International Journal of Robotics and Automation (IJRA) Vol 11, No 4: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v11i4.pp263-277

Abstract

Nowadays, most robotic systems perform their tasks in an environment that is generally known. Thus, robot’s trajectory can be planned in advance depending on a given task. However, as a part of modern manufacturing systems which are faced with the requirements to produce high product variety, mobile robots should be flexible to adapt to changing and diverse environments and needs. In such scenarios, a modification of the task or a change in the environment, forces the operator to modify robot’s trajectory. Such modification is usually expensive and time-consuming, as experienced engineers must be involved to program robot’s movements. The current paper presents a solution to this problem by simplifying the process of teaching the robot a new trajectory. The proposed method generates a trajectory based on an initial raw demonstration of its shape. The new trajectory is generated in such a way that the errors between the actual and target end positions and orientations of the robot are minimized. To minimize those errors, the grey wolf optimization (GWO) algorithm is applied. The proposed approach is demonstrated for a two-wheeled mobile robot. Simulation and experimental results confirm high accuracy of generated trajectories.