Daniel Kwegyir
Kwame Nkrumah University of Science and Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANN-Based Electricity Theft Classification Technique for Limited Data Distribution Systems Monister Yaw Kwarteng; Francis Boafo Effah; Daniel Kwegyir; Emmanuel Asuming Frimpong
JURNAL NASIONAL TEKNIK ELEKTRO Vol 12, No 1: March 2023
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jnte.v12n1.1072.2023

Abstract

Electricity theft has been a challenge for distribution systems over the years. Theft presents a massive cost to the system operators and other issues such as transformer overloading, line loading, etc. It has become crucial for measures to be implemented to combat illegal electricity consumption. This work sought to develop an artificial neural network-based electricity theft classifier for distribution systems with limited data, i.e., systems that can only provide consumption data alone and no auxiliary data. First, a novel data pre-processing method was proposed for the systems with consumption data only. Again, synthetic minority oversampling is employed to deal with the unbalance problem in the theft detection dataset. Afterwards, an artificial neural network (ANN)-based classifier was proposed to classify customers as normal or fraudulent. The proposed method was tested on actual electricity theft data from the Electricity Company of Ghana (ECG) and its performance compared to random forest (RF) and logistic regression (LR) classifiers. The proposed ANN-based classifier performed exceptionally by producing the best results over RF and LR regarding precision, recall, F1-score, and accuracy of 99.49%, 100%, 99.75%, and 99.74%, respectively.
Short-Term EV Charging Demand Forecast with Feedforward Artificial Neural Network Francis Boafo Effah; Daniel Kwegyir; Daniel Opoku; Peter Asigri; Emmanuel Asuming Frimpong
JURNAL NASIONAL TEKNIK ELEKTRO Vol 12, No 2: July 2023
Publisher : Jurusan Teknik Elektro Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jnte.v12n2.1094.2023

Abstract

The global increase in greenhouse gas emissions from automobiles has brought about the manufacture and usage of large quantities of electric vehicles (EVs). However, to ensure proper integration of EVs into the grid, there is a need to forecast the charging demand of EVs accurately. This paper presents a short-term electric vehicle charging demand forecast using a feedforward artificial neural network optimized with a modified local leader phase spider monkey optimization (MLLP-SMO) algorithm, a proposed variant of spider monkey optimization. A proportionate fitness selection is employed to improve the update process of the local leader phase of the spider monkey optimization. The proposed algorithm trains a feedforward neural network to forecast electric vehicle charging demand. The effectiveness of the proposed forecasting model was tested and validated with electric vehicle public charging data from the United Kingdom Power Networks Low Carbon London Project. The model's performance was compared to a feedforward neural network trained with particle swarm optimization, genetic algorithm, classical spider monkey optimization, and two conventional forecasting models, multi-linear regression and Monte Carlo simulation. The performance of the proposed forecasting model was assessed using the mean absolute percentage error of forecast and forecasting accuracy. The model produced a forecast accuracy and mean absolute percentage error of 99.88% and 3.384%, respectively. The results show that MLLP-SMO as a trainer predicted better than the other forecasting models and met industry standard forecast accuracy.