Rayner Alfred
Knowledge Technology Research Group, Faculty of Computing and Informatics, Universiti Malaysia Sabah, Sabah

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Multi-step CNN forecasting for COVID-19 multivariate time-series Haviluddin Haviluddin; Rayner Alfred
International Journal of Advances in Intelligent Informatics Vol 9, No 2 (2023): July 2023
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v9i2.1080

Abstract

The new coronavirus (COVID-19) has spread to over 200 countries, with over 36 million confirmed cases as of October 10, 2020. As a result, numerous machine learning models capable of forecasting the epidemic worldwide have been produced. This paper reviews and summarizes the most relevant machine learning forecasting models for COVID-19. The dataset is derived from the world health organization (WHO) COVID-19 dashboard, and it contains official daily counts of COVID-19 cases, fatalities, and vaccination use reported by countries, territories, and regions. We propose various convolutional neural network (CNN) based models such as CNN, single exponential smoothing CNN (S-CNN), moving average CNN (MA-CNN), smoothed moving average CNN (SMA-CNN), and moving average smoothed CNN (MAS-CNN). Here, MAPE and MSE are used to assess the suggested models. MAPE is frequently used to compare accuracy across time series with different scales. MSE, the model must strive for a total forecast equal to the entire demand. That is, optimizing MSE seeks to create a forecast that is right on average and so unbiased. The final result shows that SMA-CNN outperformed its baselines in both MAPE and MSE. The main contribution of this novel forecasting approach is a more accurate result as a base of the strategy of preventing COVID-19 spreads.