Asep Muhamad Samsudin, Asep Muhamad
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol Rokhati, Nur; Istirokhatun, Titik; Samsudin, Asep Muhamad
International Journal of Renewable Energy Development Vol 5, No 2 (2016): July 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.2.101-106

Abstract

Hydrophilicity of membrane causing only water can pass through membrane. Pervaporation process using organophilic membrane has been offered as alternative for ethanol dehydration. This paper investigate pervaporation based biopolymer composite membrane from alginate-chitosan using layer by layer method prepared by glutaraldehyde as crosslinking agent and polyethersulfone (PES) as supported membrane. Characterization of crosslinked of composite membrane by FTIR helped in identification of sites for interaction between layers of membrane and support layer (PES). The SEM showed a multilayer structure and a distinct interface between the chitosan layer, the sodium alginate layer and the support layer. The coating sequence of membranes had an obvious influence on the pervaporation dehydration performance of membranes. For the dehydration of 95 wt% ethanol-water mixtures, a good performance of PES-chitosan-alginate-chitosan (PES/Chi/Alg/Chi) composite membrane was found in the pervaporation dehydration of ethanol. Article History: Received April 12nd , 2016; Received in revised form June 25th , 2016; Accepted July 1st , 2016; Available onlineHow to Cite This Article: Rokhati, N., Istirokhatun, T. and Samsudin, A.M. (2016) Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol. Int. Journal of Renewable Energy Development, 5(2), 101-106.http://dx.doi.org/10.14710/ijred.5.2.101-106 
Poly(vinyl alcohol)-Based Anion Exchange Membranes for Alkaline Direct Ethanol Fuel Cells Samsudin, Asep Muhamad; Wolf, Sigrid; Roschger, Michaela; Hacker, Viktor
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33168

Abstract

Crosslinked anion exchange membranes (AEMs) made from poly(vinyl alcohol) (PVA) as a backbone polymer and different approaches to functional group introduction were prepared by means of solution casting with thermal and chemical crosslinking. Membrane characterization was performed by SEM, FTIR, and thermogravimetric analyses. The performance of AEMs was evaluated by water uptake, swelling degree, ion exchange capacity, OH- conductivity, and single cell tests. A combination of quaternized ammonium poly(vinyl alcohol) (QPVA) and poly(diallyldimethylammonium chloride) (PDDMAC) showed the highest conductivity, water uptake, and swelling among other functional group sources. The AEM with a combined mass ratio of QPVA and PDDMAC of 1:0.5 (QPV/PDD0.5) has the highest hydroxide conductivity of 54.46 mS cm-1. The single fuel cell tests with QPV/PDD0.5 membrane yield the maximum power density and current density of 8.6 mW cm-2 and 47.6 mA cm-2 at 57 °C. This study demonstrates that PVA-based AEMs have the potential for alkaline direct ethanol fuel cells (ADEFCs) application.