Tshipuke Vhahangwele
North-West University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Blockchain-Enabled Vaccination Registration and Verification System in Healthcare Management Bassey Isong; Tshipuke Vhahangwele; Adnan M Abu-Mahfouz
Journal of Information System and Informatics Vol 5 No 2 (2023): Journal of Information Systems and Informatics
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v5i2.497

Abstract

Client-server-based healthcare systems are unable to manipulate a high data volume, prone to a single failure point, limited scalability, and data integrity. Particularly, several measures introduced to help curb the spread of Covid-19 were not effective and patient records were not adequately managed and maintained. Most vaccination-proof certificates were forged by unauthorized parties and no standard verification medium exists. Therefore, this paper proposes a blockchain-enabled vaccination management system (VMS). VMS utilizes smart contracts to store encrypted patients record, generate vaccination certificates, and verify the legitimacy of the certificate using a QR code. VMS prototype is implemented using Ethereum, a public blockchain and simulations performed based on Apache JMeter and Hyperledger Caliper to assess its performance in terms of throughput, latency and response time, and the average time per transaction. Results show VMS achieved an average: response time of 132.24 ms, the throughput of 379.89 tps, latency of 204.60 ms, and time of transactions is 10s-12s for 1000 transactions. Also, its comparison with the centralized database shows the traditional database’s effectiveness in transaction processing but lacks data privacy and security strengths. We, therefore, recommend the use of blockchain in the healthcare system and other related sectors such as elections, and student records management to ensure data privacy and security and rid the system of a single point of failure.