Huu Cuong Le
Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

A comprehensive review on the use of biodiesel for diesel engines Van Giao Nguyen; Minh Tuan Pham; Nguyen Viet Linh Le; Huu Cuong Le; Thanh Hai Truong; Dao Nam Cao
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54612

Abstract

Fossil fuels are the main source of energy for transportation operations around the world. However, fossil fuels cause extremely negative impacts on the environment, as well as uneven distribution across countries, increasing energy insecurity. Biodiesel is one of the potential and feasible options in recent years to solve energy problems. Biodiesel is a renewable, low-carbon fuel source that is increasingly being used as a replacement for traditional fossil fuels, particularly in diesel engines. Biodiesel has several potential benefits such as reducing greenhouse gas emissions, improving air quality, and energy independence. However, there are also several challenges associated with the use of biodiesel including the compatibility of biodiesel with existing engine technologies and infrastructure as well as the cost of production, which can vary depending on factors such as location, climate, and competing uses for the feedstocks. Meanwhile, studies aimed at comprehensively assessing the impact of biodiesel on engine power, performance, and emissions are lacking. This becomes a major barrier to the dissemination of this potential energy source. Therefore, this study will provide a comprehensive view of the physicochemical properties of biodiesel that affect the performance and emission properties of the engine, as well as discuss the difficulties and opportunities of this potential fuel source.
Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer Van Nhanh Nguyen; Prabhakar Sharma; Anurag Kumar; Minh Tuan Pham; Huu Cuong Le; Thanh Hai Truong; Dao Nam Cao
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54941

Abstract

Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.
Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer Van Nhanh Nguyen; Prabhakar Sharma; Anurag Kumar; Minh Tuan Pham; Huu Cuong Le; Thanh Hai Truong; Dao Nam Cao
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54941

Abstract

Biodiesel manufacturing from renewable feedstocks has received a lot of attention as a viable alternative to fossil fuels. The Box-Behnken design, analysis of variance (ANOVA), and the Grey Wolf Optimizer (GWO) algorithm were used in this work to optimise biodiesel production from Nahar oil. The goal was to determine the best operating parameters for maximising biodiesel yield. The Box-Behnken design is used, with four essential parameters taken into account: molar ratio, reaction duration and temperature, and catalyst weight percentage. The response surface is studied in this design, and the key factors influencing biodiesel yield are discovered. The gathered data is given to ANOVA analysis to determine the statistical significance. ANOVA analysis is performed on the acquired data to determine the statistical significance of the components and their interactions. The GWO algorithm is used to better optimise the biodiesel production process. Based on the data provided, the GWO algorithm obtains an optimised yield of 91.6484% by running the reaction for 200 minutes, using a molar ratio of 7, and a catalyst weight percentage of 1.2. As indicated by the lower boundaries, the reaction temperature ranges from 50 °C. The results show that the Box-Behnken design, ANOVA, and GWO algorithm were successfully integrated for optimising biodiesel production from Nahar oil. This method offers useful insights into process optimisation and indicates the possibilities for increasing the efficiency and sustainability of biodiesel production. Further study can broaden the use of these strategies to various biodiesel production processes and feedstocks, advancing sustainable energy technology.
Laminar Flame Characteristics of 2,5-Dimethylfuran (DMF) Biofuel: A Comparative Review with Ethanol and Gasoline Long Vuong Hoang; Danh Chan Nguyen; Thanh Hai Truong; Huu Cuong Le; Minh Nhat Nguyen
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.42611

Abstract

Since the early years of the 21st century, the whole world has faced two very urgent problems: the depletion of fossil energy sources and climate change due to environmental pollution. Among the solutions sought, 2,5-Dimethylfuran (DMF) emerged as a promising solution. DMF is a 2nd generation biofuel capable of mass production from biomass. There have been many studies confirming that DMF is a potential alternative fuel for traditional fuels (gasoline and diesel) in internal combustion engines, contributing to solving the problem of energy security and environmental pollution. However, in order to apply DMF in practice, more comprehensive studies are needed. Not out of the above trend, this paper analyzes and discusses in detail the characteristics of DMF's combustible laminar flame and its instability under different initial conditions. The evaluation results show that the flame characteristics of DMF are similar to those of gasoline, although the burning rate of DMF is much higher than that of gasoline. This shows that DMF can become a potential alternative fuel in internal combustion engines.
A comprehensive review on the use of biodiesel for diesel engines Van Giao Nguyen; Minh Tuan Pham; Nguyen Viet Linh Le; Huu Cuong Le; Thanh Hai Truong; Dao Nam Cao
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54612

Abstract

Fossil fuels are the main source of energy for transportation operations around the world. However, fossil fuels cause extremely negative impacts on the environment, as well as uneven distribution across countries, increasing energy insecurity. Biodiesel is one of the potential and feasible options in recent years to solve energy problems. Biodiesel is a renewable, low-carbon fuel source that is increasingly being used as a replacement for traditional fossil fuels, particularly in diesel engines. Biodiesel has several potential benefits such as reducing greenhouse gas emissions, improving air quality, and energy independence. However, there are also several challenges associated with the use of biodiesel including the compatibility of biodiesel with existing engine technologies and infrastructure as well as the cost of production, which can vary depending on factors such as location, climate, and competing uses for the feedstocks. Meanwhile, studies aimed at comprehensively assessing the impact of biodiesel on engine power, performance, and emissions are lacking. This becomes a major barrier to the dissemination of this potential energy source. Therefore, this study will provide a comprehensive view of the physicochemical properties of biodiesel that affect the performance and emission properties of the engine, as well as discuss the difficulties and opportunities of this potential fuel source.