Claim Missing Document
Check
Articles

Found 1 Documents
Search

Dynamics of Covid-19 model with public awareness, quarantine, and isolation Risyqaa Syafitri; Trisilowati Trisilowati; Wuryansari Muharini Kusumawinahyu
Jambura Journal of Biomathematics (JJBM) Volume 4, Issue 1: June 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v4i1.19832

Abstract

This paper presents a new COVID-19 model that contains public awareness, quarantine, and isolation. The model includes eight compartments: susceptible aware (SA), susceptible unaware (SU), exposed (E), asymptomatic infected (A), symptomatic infected (I), recovered (R), quarantined (Q), and isolated (J). The introduction will be shown in the first section, followed by the model simulation. The equilibrium points, basic reproduction number, and stability of the equilibrium points are then determined. The model has two equilibrium points: disease-free equilibrium point and endemic equilibrium point. The next-generation matrix is used to calculate the basic reproduction number R0. The disease-free equilibrium point always exists and is locally stable if R0 1, whereas the endemic equilibrium point exists when R0 1 and is locally stable if satisfying the Routh-Hurwitz criterion. Stability properties of the equilibrium confirmed by numerical simulation also show that quarantine rate and isolation rate have an impact in the transmission of COVID-19