Claim Missing Document
Check
Articles

Found 2 Documents
Search

PROCESS OF PURIFICATION OF WASTE COOKING OIL USING MONITORING (MORINDA CITRIFOLIA) AND KAOLIN AS ADSORBENT Alfian Putra; S Sariadi; Reza Fauzan; Yaumil Akmalia H; T Taufik
Jurnal Sains dan Teknologi Reaksi Vol 21, No 01 (2023): JURNAL SAINS DAN TEKNOLOGI REAKSI
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jstr.v21i01.4198

Abstract

The use of cooking oil repeatedly at high temperatures will cause the quality and nutritional value of fried foods to decrease, which can have a negative impact on consumer health. Repeated use will increase the levels of free fatty acids (ALB) in cooking oil so that it will have a negative impact on the health of people who consume it or use it as a heating medium (frying). The adsorption process is carried out by contacting used cooking oil and adsorbent in the composition Because of this, the idea arose to use noni as an adsorbent for refining used cooking oil by means of adsorption using a mixture of noni (M) and kaolin (K) by varying the composition and contact time. The function of this adsorbent is generally to absorb impurities, odors and chemical substances that are toxic in used cooking oil. Ascorbic acid contained in noni fruit also functions as an anti-oxidant, namely a substance that is able to neutralize the peroxide groups contained in used cooking oil. The function of this adsorbent is generally to absorb impurities, odors and chemical substances that are toxic in used cooking oil. Ascorbic acid contained in noni fruit also functions as an anti-oxidant, namely a substance that is able to neutralize the peroxide groups contained in used cooking oil. The adsorption process is carried out by contacting used cooking oil and adsorbent in the composition Ascorbic acid contained in noni fruit also functions as an anti-oxidant, namely a substance that is able to neutralize the peroxide groups contained in used cooking oil. The adsorption process is carried out by contacting used cooking oil and adsorbent in the composition (100:0 ; 75:25 ; 50:50 ; 25:75 ; 0:100) for 30, 60, 90 and 120 minutes respectively with activated and unactivated kaolin as the control variable. The oil after adsorption was then observed for changes in acid number, peroxide value, moisture content, impurities content and color intensity. In several studies, the quality of oil recovered from used cooking oil showed a slightly blackish color, making the oil look less attractive. The use of kaolin as a bleaching earth in refining used cooking oil is due to the high SiO2 content in kaolin, which is expected to improve the color of used cooking oil, especially to improve the color of the recovered oil, so that it approaches the quality of standard cooking oil used in the market.Keywords: adsorbent; free fatty acids; noni; used cooking oil; kaolin
MODELING OF PHOTOVOLTAIC PANELS FOR GAHARU ESSENTIAL OIL DISTILLATION SYSTEM T Taufik; S Subhan; Arief Mardiyanto; A Azhar; Muhammad Kamal; Atiqah Aida
Jurnal Sains dan Teknologi Reaksi Vol 21, No 01 (2023): JURNAL SAINS DAN TEKNOLOGI REAKSI
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jstr.v21i01.4201

Abstract

Solar energy has now been converted into electrical energy by using alternative solar panels to absorb heat energy which is converted into electrical energy. Solar panels or often referred to as photovoltaic systems are an alternative that is being actively developed to deal with the global status of energy shortages because fossil energy sources, which have been the main energy source, will run out as population growth increases. In this study used a solar cell with a capacity of 100 Wp which required 27 units of solar cells. used solar. The absorption power of the solar cell energy used is 2,500 watts with varying operating times, namely 1.5 hours, 3 hours, 4.5 hours and 6 hours. The use of solar cell energy will later be used for agarwood oil distillation. Gaharu wood is pre-treated in the form of drying and soaking before the distillation process is carried out. Pretreatment is carried out with the aim that the resulting essential oil can increase in yield. The results obtained yield showed the best quality at the 20th day immersion time and 10 hours of distillation time (0.51%). The results of the GC-Ms gas chromatogram analysis were indicated by the presence of guaiol, selinene and panasinsen compounds, namely (55.90%), (19.56%) and (5.53%). Keywords: solar cell, renewable energy, agarwood, distillation