Suherman Suherman
Department of Chemical Engineering, Diponegoro University, Jl. Prof. Sudarto, Kampus UNDIP Tembalang, Semarang 50239

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology Istadi Istadi; Suherman Suherman; Luqman Buchori
Bulletin of Chemical Reaction Engineering & Catalysis 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.5.2.797.103-111

Abstract

The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13) with favorable heating value (44,768 kJ/kg). © 2010 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Potential of LiNO3/Al2O3 Catalyst for Heterogeneous Transesterification of Palm Oil to Biodiesel Istadi Istadi; Bambang Pramudono; Suherman Suherman; Slamet Priyanto
Bulletin of Chemical Reaction Engineering & Catalysis 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.5.1.7128.51-56

Abstract

Production of biodiesel through transesterification process using heterogenous catalysts in order to avoid the saponification problem was studied. In this process, palm oil reacted with methanol to form a mixture of glycerol and biodiese over a solid basic catalyst. One type of the catalysts used in this research is basic catalyst of LiNO3/Al2O3. The parameters studied in this research are concentration of LiNO3 loading on Al2O3 and effect of different reaction time. The products was analyzed using Gas Chromatography to determine composition and yield of resulted methyl esters as well as conversion of palm oil to biodiesel. The major products in this transesterification reaction were biodiesel and glycerol. It can be concluded that the 20 wt% LiNO3/Al2O3 catalyst is potential for producing biodiesel from palm oil over transesterification reaction. Advantages of the usage of this catalyst is that the soap formation was not observed in this research. © 2010 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)