Komang Agus Arta Wijaya
Actuarial Science Study Program, Mathematics Department, Brawijaya University, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

DEVELOPMENT OF HEALTH INSURANCE CLAIM PREDICTION METHOD BASED ON SUPPORT VECTOR MACHINE AND BAT ALGORITHM Syaiful Anam; Abdi Negara Guci; Fery Widhiatmoko; Mila Kurniawaty; Komang Agus Arta Wijaya
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 4 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol17iss4pp2281-2292

Abstract

Health insurance industry is very much needed by the community in handling the financial risks in the health sector. The number of claims greatly affects the achievement of profits and the sustainability of the health insurance industry. Therefore, filing claims by insurance users from year to year is important to be predicted in insurance firm. The Machine Learning (ML) method promises to be a good solution for predicting health insurance claims compared to conventional data analytics methods. Support Vector Machine (SVM) is one of the superior ML approaches. Nonetheless, SVM performance is controlled by the suitable selection of SVM parameters. The SVM parameters is typically selected by trial and error, sometimes resulting in not optimal performance and taking a long time to complete. Swarm intelligence-based algorithms can be used to select the best parameters from SVM. This method is capable of locating the global best solution, is simple to implemented, and doesn't involve derivatives. One of the best swarm intelligence algorithms is the Bat Algorithm (BA). BA has a faster convergence rate than other algorithms, for example Particle Swarm Optimization (PSO). Based on this situation, this paper offers the new classification model for predicting health insurance claim based on SVM and BA. The metrics utilized for evaluation are accuracy, recall, precision, f1-score, and computing time. The experimental outcomes show that the proposed approach is superior to the conventional SVM and the hybrid of SVM and PSO in forecasting health insurance claims. In addition, the proposed method has a substantially shorter computing time than the hybrid of SVM and PSO. The outcomes of the experiments also indicate that the new classification model for predicting health insurance claim based on the SVM and BA can avoid over-fitting condition.