Claim Missing Document
Check
Articles

Found 2 Documents
Search

UPAYA MITIGASI KELONGSORAN LERENG PADA JALUR PIPA PENSTOCK EKSISTING Asrinia Desilia; Fritz R.P.Nababan; Zakwan Gusnadi
Akselerasi : Jurnal Ilmiah Teknik Sipil Vol 5, No 2 (2024): Januari
Publisher : Universitas Siliwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37058/aks.v5i2.10213

Abstract

Kondisi kestabilan lereng sangat tergantung dari berbagai faktor yang mempengaruhi, salah satunya adalah kondisi saturasi tanah. Tanah eksisting yang mengalami saturasi akibat intensitas hujan tinggi menyebabkan tambahan beban pada material tanah dan mereduksi kekuatan tanah. Dalam jangka waktu tertentu hal tersebut dapat menjadi penyebab pergerakan tanah dan kelongsoran lereng. Pergerakan tanah yang terjadi berdekatan dengan struktur eksisting tentu saja akan turut berpengaruh terhadap kestabilan struktur tersebut. Penelitian ini mengkaji tentang upaya mitigasi struktur pipa penstock yang mengalami kerusakan akibat pergerakan tanah yang terjadi. Upaya mitigasi yang dilakukan adalah dengan pemasangan soldier pile dan relokasi abutment fondasi pipa penstock. Pemasangan soldier pile diameter 1,2 m panjang 20 m dan jarak 2,4 m dimaksudkan untuk memotong bidang pergerakan lereng agar dapat menghentikan pergerakan lanjutan. Sedangkan relokasi abutment pipa penstock bertujuan untuk menempatkan abutment pada lokasi yang tidak terjadi pergerakan tanah. Proses analisis upaya mitigasi dilakukan dengan metode elemen hingga menggunakan bantuan program Plaxis 2D dan Ensoft Group. Hasil analisis menunjukan faktor kemamanan stabilitas meningkat dari semula 1,3 menjadi 1,5. Respon gaya yang terjadi pada soldier pile yaitu bending moment sebesar 239,9 kNm dan total displacement 4,1 cm. Defleksi lateral tanah terhadap pipa sebesar 0,8 cm, masih berada di bawah batas izin 2,0 cm untuk kondisi tegangan izin.
Analysis of Soil Improvement Through PVD and Vacuum Preloading with Several Equivalent Permeability Methods Zakwan Gusnadi; Iman Handiman; Herwan Dermawan; Asrinia Desilia
Indonesian Geotechnical Journal Vol. 3 No. 1 (2024): Vol. 3, No. 1, April 2024
Publisher : Himpunan Ahli Teknik Tanah Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56144/igj.v3i1.92

Abstract

Vacuum preloading combined with prefabricated vertical drain (PVD) is one of the common soft soil improvement methods. Soft soils often pose significant problems in construction projects due to their low shear strength and high compressibility, leading to settlement issues and potential structural instability. The PVD combined with vacuum preloading method addresses these problems by accelerating the consolidation process and minimizing settlement during service period. The acceleration occurs due to the presence of PVD, allowing dissipation of excess pore water in horizontal direction towards the PVD. Thereafter, the water in the PVD is drained to the surface. When modelled in 2D, PVD behaves as a continuous drain in the plane strain direction, causing the flow conditions to deviate from the actual conditions. To address this issue, equivalent soil permeability values is required, allowing the 2D model to produce results closely resembling the actual conditions. This research explores the improvement of PVD vacuum preloading through three equivalent permeability approaches. Utilizing field monitoring data, which includes settlement measurements from settlement plates, changes in pore water pressure recorded by piezometers, and lateral deformation data captured by inclinometers, the study evaluates the effectiveness of these approaches. Comparative analyses with field monitoring data reveal that Indraratna equivalent permeability method has the best fit. The integration of PVD and vacuum preloading, coupled with the refinement of equivalent permeability methodologies, offers a promising solution for addressing soft soil problems in geotechnical engineering. This research contributes to the practical application of these methods in construction projects, emphasizing their potential to enhance soil stabilization and reduce settlement-related risks.