Yudistira, I Gusti Agung Anom
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : CommIT (Communication

Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method Yudistira, I Gusti Agung Anom; Nariswari, Rinda; Arifin, Samsul; Abdillah, Abdul Azis; Prasetyo, Puguh Wahyu; Susyanto, Nanang
CommIT (Communication and Information Technology) Journal Vol. 18 No. 1 (2024): CommIT Journal
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/commit.v18i1.8495

Abstract

The prediction of project completion time, which is important in project management, is only based on an estimate of three numbers, namely the fastest, slowest, and presumably time. The common practice of applying normal distribution through Monte Carlo simulation in Program Evaluation and Review Technique (PERT) research often fails to accurately represent project activity durations, leading to potentially biased project completion prediction. Based on these problems, a different method is proposed, namely, Discrete Event Simulation (DES). The research aims to evaluate the effectiveness of the simmer package in R in conducting PERT analysis. Specifically, there are three objectives in the research: 1) develop a simulation model to predict how long a project will take and find the critical path, 2) create an R script to simulate discrete events on a PERT network, and 3) explore the simulation output using the simmer package in the form of summary statistics and estimation of project risk. Then, a library research with a descriptive and exploratory method is used for data collection. The hypothetical network is used to obtain the numerical results, which provide the predicted value of the project completion, the critical path, and the risk level. Simulation, including 100 replications, results in a predicted project completion time and a standard deviation of 20.7 and 2.2 weeks, respectively. The DES method has been proven highly effective in predicting the completion time of a project described by the PERT network. In addition, it offers increased flexibility.