Claim Missing Document
Check
Articles

Found 26 Documents
Search

Efforts on Geological Conservation to Watuadeg-Basalt Pillow Lavas at West Sumber, Berbah District, Sleman Regency, Yogyakarta Special Region-Indonesia Mohamad Faizal; Rydo Faisal Arisandy; Ariel l Afrandi Tatawu; Shandi Hargian Wijaksono; Frando Ryan Alansa; Muhammad Nur Arifin; Sri Mulyaningsih
Journal of Geoscience, Engineering, Environment, and Technology Vol. 3 No. 3 (2018): JGEET Vol 03 No 03 : September (2018)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1352.764 KB) | DOI: 10.24273/jgeet.2018.3.3.2035

Abstract

Site of Berbah pillow lavas is an important geological heritage that is currently as one of the main tourism destination area located in Yogyakarta Special Region, Indonesia. It has a unique appearence of pillow structures with diameters of 0.5-1.0 m and the flow length of 2-5m. This site is used to visited by students and earth researchers becouse of its unique geological history. This study was approached with geotourism and geoconservation points of view. The research method uses qualitatively field geological observations. Data analysis was carried out by assessing the feasibility study of the geological conditions that had been produced in relation to the development of educational toursm. In its condition, this site suffered damage to the development impacts in the surrounding area and was once an object of agate mining so that its condition was increasingly not maintained. In order to maintain this site and become a protected geological site, there must be seriousness of various parties in an effort to map the geological conditions of the pillow lava complex, an important role that geologists have to inform and disseminate to all stakeholders and local residents to be able to independently manage the potential of geotourism. In addition, it also needs the commitment of the local government in protecting the pillow lava object and fighting for it to become a protected geological reserve.
Volcanism in The Pre-Semilir Formation at Giriloyo Region; Allegedly as Source of Kebo-Butak Formation in the Western Southern Mountains Sri Mulyaningsih; Muchlis Muchlis; Nur W.A.A.T. Heriyadi; Desi Kiswiranti
Journal of Geoscience, Engineering, Environment, and Technology Vol. 4 No. 3 (2019): JGEET Vol 04 No 03 : September (2019)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1401.865 KB) | DOI: 10.25299/jgeet.2019.4.3.2262

Abstract

Kebo-Butak Formation was known to be the oldest volcanic rocks limited in regional terms in the lower Baturagung Hills, Gedangsari area, Gunungkidul Regency. The main constituents of the Kebo-Butak Formation consist of intersection of volcanic-clastic rocks and calcareous sediments, locally also found basalt lava with pillow structures; which distinguished it from other volcanic rock formations in the Southern Mountains. This study aims to determine the relationship of volcanic rocks exposed in Giriloyo with the Kebo-Butak Formation in the Baturagung Hills; the chronostratigraphy and the history of volcanic activities that produced the volcanic rocks of Giriloyo. This research was approached by volcanic geological mapping using surface mapping suported by gravity anayses. From the bottom to the top of the frontier areas result volcaniclastic rocks consisting of black tuffs with several fragments of volcanic bombs with basalt composition intersecting with thin basaltic lava inserted by calcareous claystone having an age of N5-7 (Early Miocene); pyroxene-rich basalt volcanic sequence consists of thick layers of tuff with creamy-brown color intersecting with lava and breccia inserted by calcareous sandstone aged N7-8; dikes, lava and agglomerates with basaltic composition and lava and agglomerates with andesitic composition. Stratigraphically, the volcanic rocks exposed at Giriloyo correlated with the volcanic rocks exposed at Karangtalun (Wukirsari) were under the Semilir Formation, bordered with normal fault N210oE/77o, the hanging wall composed by light grey tuff of Semilir Formation. Gravity analyses found high anomalies below the Semilir Formation exposed at Karangtalun-Munthuk (east of study area) continued to below the Giriloyo area. The high anomalies were identified as the igneous/ignimbrite volcanic sequence. Descriptively and stratigraphically, the Giriloyo volcanic sequence are a part of Kebo-Butak Formation. The petrogenesis of the volcanic rocks will be discussed in further research to interpret magmatological properties, the evolving paleo-volcano, and the absolute age of the rocks.
Hydrothermal Alteration and Ore Metal Mineralisation at Temon, Pacitan, East Jawa, Indonesia. Sri Mulyaningsih; Yoyok Ragowo Siswomijoyo Sukisman; Radhitya Adzan Hidayah
Journal of Geoscience, Engineering, Environment, and Technology Vol. 6 No. 1 (2021): JGEET Vol 06 No 01 : March (2021)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2021.6.1.6368

Abstract

Pacitan area is known as Tertiary volcanic arc in Java, as the result of subduction zone of the Indian-Australian Plate beneath the Eurasian Plate since Oligocene. It was superimposed volcanism which formed a wide area of hydrothermal alteration zone, resulting potential ore metals mineralization, such at Temon and its vicinities, Pacitan Regency, East Java Province, Indonesia. The aim of study was to analyze hydrothermal alteration and ore metal mineralization zones. Method was surface mapping, thin section analyses, mineragraphic analyses and X-Ray Diffraction (XRD) analyses. Field study observed denuded and deformed volcanic crater geomorphology. There are ore placer deposits within the sand dunes of Grindulu River, which it consists of andesitic lava and breccia of Early Oligocene Mandalika Formation; Early Miocene lithic and vitric tuffs; and dacitic intrusion. The dikes of dacite as the last of volcanism was the host rock controlling the zonation of alteration and mineralization stages. Oblique normal faults and shear faults were cross over dilating formed fractures, which were as bodies to depositing the ore metals. There are (zone 1st) the argillic clay consists of quartz+alunite+dickite+kaolinite±illite with vuggy structures, (zone 2nd) the argillic clay consists of quartz+montmorillonite±illite zone with quartz vents, brecciated and sulfide massive, and (zone 3rd) as the chloritized zone with low grade and supergene on the edge of hydrothermal alteration. It was fluid overprinted that very acid to the core of zone 1st (pH2-4) into more netral pH 4-6 (zone 2nd) and (pH5-6) in the edge zone 3rd. The potentials ore metal mineralization are Fe and Cu by pyrite, chalcopyrite, hematite, and covellite. Other potential ore metal mineralization was also from enargite by the supergene alteration.
IDENTIFIKASI JELAJAH GEOLOGI GUNUNG API PURBA GUNUNG IRENG DESA PENGKOK, KABUPATEN GUNUNGKIDUL Sri Mulyaningsih; Nur Widi Astanto Agus Tri Heriyadi; Dina Tania; Suhartono Suhartono
Jurnal Pariwisata Vol 6, No 2 (2019): Jurnal Pariwisata
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2012.55 KB) | DOI: 10.31294/par.v6i2.6162

Abstract

Gunung Ireng di Desa Pengkok adalah destinasi wisata baru geologi gunung api purba di Kecamatan Patuk, Kabupaten Gunungkidul, di samping Gunung Nglanggeran. Selain aglomerat, sebagaimana penciri geologi Gunung Api Purba Nglanggeran, breksi vulkanik, lava bersruktur meniang, dike, dan blocky lava berkomposisi andesit menyusun Gunung Ireng. Makalah ini disusun untuk mengidentifikasi kealamian jelajah alam geologi gunung api purba Gunung Ireng sebagai destinasi wisata minat khusus geowisata. Metode yang digunakan adalah studi dan analisis konektivitas Gunung Ireng terhadap destinasi-destinasi wisata lain di sekitarnya dan identifikasi keragaman data geologinya. Penelitian menjumpai morfologi bukit melingkar berbentuk kubah, yang dikelilingi lembah berslope ~30-55o yang melandai ke baratlaut. Dari atas bukit terlihat Gunung Wayang (Nglanggeran di ujung timur), karst Selopamioro di arah selatan, Sudimoro di arah barat dan tinggian Patuk di sebelah utara. Jalur konektivitas telah menghubungkan Gunung Ireng dengan Gunung api Nglanggeran-Oro-Oro, Dlingo, Selopamioro dan Kali Ngalang-Gedangsari. Promosi dan dukungan sepenuhnya dari pemerintah Kabupaten Gunungkidul, serta optimisme pengelola adalah kunci keberhasilan Gunung Ireng untuk disejajarkan dengan destinasi-destinasi wisata minat khusus lain di sekitarnya; mendukung keberlanjutan Geopark Gunung Sewu.
Dinamika pengendapan lahar permukaan pada alur-alur lembah di bagian selatan Gunung Api Merapi, Yogyakarta Sri Mulyaningsih; Sampurno Sampurno; Yahdi Zaim; Deny Juanda Puradimaja; Sutikno Bronto
Indonesian Journal on Geoscience Vol 1, No 3 (2006)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (907.621 KB) | DOI: 10.17014/ijog.1.3.129-142

Abstract

http://dx.doi.org/10.17014/ijog.vol1no3.20062Endapan aliran rombakan Gunung Api Merapi, yang lebih dikenal sebagai lahar, terbentuk dari hasil longsoran endapan awan panas yang dipicu oleh curah hujan yang sangat tinggi. Pada saat ini, endapan awan panas tersebut berasal dari guguran kubah lava. Material suspensi tersebut selanjutnya menuruni lereng dengan kecepatan yang tinggi, menghasilkan aliran turbulen. Aliran tersebut biasanya berkembang pada daerah dengan perbedaan morfologi berkemiringan lereng tinggi ke landai, atau yang sering dikenal sebagai daerah tekuk lereng. Studi ini didasarkan pada pengamatan dan pengukuran fragmen lahar yang berukuran besar di permukaan. Analisis meliputi arah penyirapan, bentuk, dan besar butir fragmen. Hasil penelitian mendapatkan model arah aliran fragmen besar lahar dari bagian atas aliran rombakan, yang membentuk “model punggung katak” atau “model punggung gajah”. Bagian depan katak atau gajah (kepala) yaitu arah aliran atau bagian depan aliran. Hasil penelitian juga menunjukkan bahwa model tersebut berlaku pada fragmen dengan diameter 90 cm atau lebih besar. Di daerah penelitian, fragmen dengan diameter 90 cm mencapai jarak hingga 22 km dari sumbernya. Hasil penelitian ini dapat digunakan sebagai model untuk menentukan arah aliran lahar (aliran rombakan) purba yang sumbernya belum diketahui.  
Gunung api maar di Semenanjung Muria Sutikno Bronto; Sri Mulyaningsih
Indonesian Journal on Geoscience Vol 2, No 1 (2007)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (874.556 KB) | DOI: 10.17014/ijog.2.1.43-54

Abstract

http://dx.doi.org/10.17014/ijog.vol2no1.20074Three maars are well identifi ed in the Muria Peninsula, i.e. Bambang Maar, Gunungrowo Maar, and Gembong Maar. The maars were formed by monogenetic volcanic eruptions due to the interaction between heat source (magma), groundwater and calcareous basement rocks. This interaction is able to produce very high pressure of gas and steam causing phreatic explosions, followed by phreatomagmatic- or even magmatic explosions and ended by a lava extrusion. Satellite image analyses have recognized twelve circular features, comprising Bambang Maar, Gunungrowo Maar, and Gembaong Maar. Phisiographically, these maars are characterized by circular depressions which are surrounded by hills that are gently sloping down away from the crater or having a radier pattern morphology. Outcrops and drilling core in the circular areas that are considered as volcanic maars are lava fl ows, pyroclastic breccias, lapillistones, and tuffs, located far away from the eruption centres of Muria and Genuk Volcanoes. One of the circular features, i.e. Jepara Circular Feature, is also supported by negative anomaly (<30 mgal) showing a circular pattern. In the future, a maar volcano could possibly erupt depending on the tectonic reactivity in the region.  
Vulkanisme kompleks Gunung Patiayam di Kecamatan Jekulo, Kabupaten Kudus, Provinsi Jawa Tengah Sri Mulyaningsih; Sutikno Bronto; Ari Kusnaedi; I. Simon; I. W. Prasetyanto
Indonesian Journal on Geoscience Vol 3, No 2 (2008)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1010.037 KB) | DOI: 10.17014/ijog.3.2.75-88

Abstract

http://dx.doi.org/10.17014/ijog.vol3no2.20082The Mount Patiayam Complex was interpreted by previous researchers as “Patiayam Dome”. That was reasoned by dips following its slope directions. Field data record that lithology of the complex of Mount Patiayam is dominated by volcanic rocks. The summit of the complex is composed of igneous rocks of pyroxene basalt rich in leucite minerals, associated with autoclastic breccia and beds of volcanic breccia rich in pyroxene basalt and pumice, pumiceous breccia, and tuff. Its flanks are composed of epiclastic rocks of lahar and fluvial deposits. Some river valleys, such as Pontang River, locally consist of pyroclastic breccia, autoclastic breccia and pumiceous breccia, that are overlain by marly limestone and black clay of swampy deposits. Based on the rock composition, the volcanism had more dominated geological processes compared with sedimentary. Mineral composition of volcanic deposits of the Mount Patiayam is closer to Mount Lasem volcanic rocks than Mount Muria, i.e. absarockites, shoshonites and trachyandesite. But, based on the long distance between Patiayam and Lasem, about 60 km, those volcanic rocks could not be produced by Mount Lasem. The Patiayam volcanic deposits were produced by its own volcanic activities. Therefore, the complex of Mount Patiayam is a paleo-volcano. The interpretation is also supported by the landsat imagery, showing depression-shapes in a caldera ring-like. There are four caldera features called as Rim 1,Rim 2,Rim 3, and Rim 4, which crosses each others.  
Volcanostratigraphic Sequences of Kebo-Butak Formation at Bayat Geological Field Complex, Central Java Province and Yogyakarta Special Province, Indonesia Sri Mulyaningsih
Indonesian Journal on Geoscience Vol 3, No 2 (2016)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (9544.238 KB) | DOI: 10.17014/ijog.3.2.77-94

Abstract

DOI:10.17014/ijog.3.2.77-94Bayat Complex is usually used as a work field for students of geology and other geosciences. The study area is located in the southern part of the Bayat Complex. Administratively, it belongs to Central Java Province and Yogyakarta Special Province. The lithology of Bayat is very complex, composed of various kinds of igneous, sedimentary, metamorphic, and volcanic rocks. Most of previous researchers interpreted Bayat as a melange complex constructed within a subduction zone. Kebo-Butak is one of formations that forms the Bayat field complex. The formation is composed of basalt, layers of pumice, tuff, shale, and carbonaceous tuff. Most of them are known as volcanic rocks. These imply that volcanic activities are more probable to construct the geology of Bayat rather than the subducted melange complex. The geological mapping, supported by geomorphology, petrology, stratigraphy, and geological structures, had been conducted in a comprehensive manner using the deduction-induction method. The research encounters basalt, black pumice, tuff with basaltic glasses fragments, zeolite, argilic clay, as well as feldspathic- and pumice tuff. Petrographically, the basalt is composed of labradorite, olivine, clinopyroxene, and volcanic glass. Black pumice and tuff contain prismatic clinopyroxene, granular olivine, and volcanic glasses. Feldspathic tuff and pumice tuff are crystal vitric tuff due to more abundant feldspar, quartz, and amphibole than volcanic glass. Zeolite comprises chlorite and altered glasses as deep sea altered volcanic rocks. The geologic structure is very complex, the major structures are normal faults with pyrite in it. There were two deep submarine paleovolcanoes namely Tegalrejo and Baturagung. The first paleovolcano erupted effusively producing basaltic sequence, while the second one erupted explosively ejecting feldspathic-rich pyroclastic material. The two paleovolcanoes erupted simultaneously and repeatedly.
Geochemistry of Basaltic Merbabu Volcanic Rocks, Central Java, Indonesia Sri Mulyaningsih; Godang Shaban
Indonesian Journal on Geoscience Vol 7, No 2 (2020)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.7.2.161-178

Abstract

DOI: 10.17014/ijog.7.2.161-178The studied area is located along the hiking track of Kajor - Selo, the south flank of Merbabu Volcano, Central Java, Indonesia. Olivine basalt and augite-rich basalt compose the volcanic rocks. A geochemical study recognizes these basalts which tend to originate from the product of tholeiitic magma, in terms of transitional enriched mantle source. It is interpreted to have been formed as primary magma that mixed later with higher degrees of partial melting with a mantle wedge. Both fl uid and melt were derived from the mixing of lower active continental margin and subducting oceanic slab. This study also shows general trends of increasing incompatible elements, i.e. Rb, Ba, Pb2+, and Sr as LIL trace elements and Th, U, Nb, Ce, Zr, Hf, Nb, and Ta as HFS element comparing to basaltic andesites exposed at Thekelan, they show decreasing compatible of MgO, Fe2O3*, Al2O3, CaO, TiO2, Ni, Sr, and Ba in line with increasing SiO2. It was fractional crystallization process, shown by the slightly wide variation of Rb/Zr and La/Sm that indicates random crustal contamination.
Earthquakes, Volcanic Eruptions, and Other Geological Disasters During Historical Records In Yogyakarta Special Region, Indonesia Sri Mulyaningsih
Indonesian Journal on Geoscience Vol 8, No 2 (2021)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.8.2.197-212

Abstract

DOI:10.17014/ijog.8.2.197-212Yogyakarta, Indonesia, is a very fast developing area. The Yogyakarta historical time is divided into PreOld Mataram Era (1st - 8th century), Old Mataram Era (8th - 12th century), and Young Mataram Era (since 16th century). Geology has recorded many intermittent natural disasters within those historical time: volcanism, earthquakes, and rock movements as well. Those natural disasters have caused lots of damages, shown by buried and collapsed old buildings. Larger volcanic eruptions were known to occur once in 50 - 150 years ago, which were mostly followed by lahars as far as 32 km from the crater of Merapi Volcano, of which the last eruption was in 2010. Earthquakes were identified based on bumpy foundations that particularly occurred in the first pile of temple stones, i.e. at the temples of Kedulan, Plaosan, Morangan, Gampingan, and Boko Palace. Surface fractures are also present on the base of the palace floors. During 18th - 21st century, larger earthquakes with magnitude of 5 - 8 Richter scale occurred once in 20 - 70 years, of which the last earthquake was in 2006. A geological study clarified that there was a marine volcanism during the Tertiary with radial normal faults. The normal faults have been potential to reactivate since Plio-Pleistocene untill now, shown by surface deformations at Sudimoro Hills with a mass movement occurence as happened in Imogiri (March, 17th 2019), Pleret (2018), Piyungan, and Dlingo (March, 17th - 18th 2019). A stratigraphic study of volcaniclastic deposits around Gendol, Opak, Kuning, and Bedog Rivers shows potential floods around the rivers.