Bulletin of Chemical Reaction Engineering & Catalysis
2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)

Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution

Augustine Chioma Affam (Department of Civil Engineering, School of Engineering and Technology, University College of Technology Sarawak, 96000, Sibu, Sarawak)
Malay Chaudhuri (Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak)
Shamsul Rahman M. Kutty (Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak)



Article Info

Publish Date
02 Apr 2018

Abstract

The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2) for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio) index (BI) were observed to be (i) Fenton - 69.03% (COD), 55.61% (TOC), and 0.35 (BI); (ii) UV photo-Fenton -78.56% (COD), 63.76% (TOC) and 0.38 (BI);  (iii) solar photo-Fenton - 74.19% (COD), 58.32% (TOC) and 0.36 (BI); (iv) UV/TiO2/H2O2 - 53.62% (COD), 21.54% (TOC), and 0.26 (BI); and  (v) the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3), the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. 

Copyrights © 2018






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction ...