Jurnal Elektronika dan Telekomunikasi
Vol 20, No 2 (2020)

Parameter Estimation and Target Detection of Phased-MIMO Radar Using Capon Estimator

Syahfrizal Tahcfulloh (Department of Electrical Engineering, Universitas Borneo Tarakan)
Muttaqin Hardiwansyah (Department of Electrical Engineering, Universitas Trunojoyo Madura)



Article Info

Publish Date
31 Dec 2020

Abstract

Phased-Multiple Input Multiple Output (PMIMO) radar is multi-antenna radar that combines the main advantages of the phased array (PA) and the MIMO radars. The advantage of the PA radar is that it has a high directional coherent gain making it suitable for detecting distant and small radar cross-section (RCS) targets. Meanwhile, the main advantage of the MIMO radar is its high waveform diversity gain which makes it suitable for detecting multiple targets. The combination of these advantages is manifested by the use of overlapping subarrays in the transmit (Tx) array to improve the performance of parameters such as angle resolution and detection accuracy at amplitude and phase proportional to the maximum number of detectable targets. This paper derives a parameter estimation formula with Capon's adaptive estimator and evaluates it for the performance of these parameters. Likewise, derivation for expressions of detection performance such as the probability of false alarm and the probability of detection is also given. The effectiveness and validation of its performance are compared to conventional estimator for other types of radars in terms of the effect of the number of target angles, the RCS of targets, and variations in the number of subarrays at Tx of this radar. Meanwhile, the detection performance is evaluated based on the effect of Signal to Noise Ratio (SNR) and the number of subarrays at Tx. The evaluation results of the estimator show that it is superior to the conventional estimator for estimating the parameters of this radar as well as the detection performance. Having no sidelobe makes this estimator strong against the influence of interference and jamming so that it is suitable and attractive for the design of radar systems. Root mean square error (RMSE) on magnitude detection from LS and Capon estimators were 0.033 and 0.062, respectively. Meanwhile, the detection performance for this radar has the probability of false alarm above 10-4 and the probability of detection of more than 99%.

Copyrights © 2020






Journal Info

Abbrev

jet

Publisher

Subject

Electrical & Electronics Engineering Engineering

Description

Jurnal Elektronika dan Telekomunikasi (JET) is an open access, a peer-reviewed journal published by Research Center for Electronics and Telecommunication - Indonesian Institute of Sciences. We publish original research papers, review articles and case studies on the latest research and developments ...