Penelitian ini berkaitan dengan proses klasifikasi Pneumonia Covid-19 (radang paru-paru atau pneumonia yang disebabkan oleh virus corona SARS-CoV-2) dari citra hasil foto rontgen / x-ray paru-paru dengan menggunakan pendekatan pembelajaran mesin. Klasifikasi dilakukan untuk menentukan apakah kondisi paru-paru seseorang mengalami Pneumonia Covid-19, Pneumonia biasa, atau Normal / Sehat. Untuk menghasilkan kinerja klasifikasi yang lebih baik, proses optimasi seringkali digunakan pada tahap pelatihan data. Banyak teknik yang digunakan untuk melakukan optimasi tersebut, diantaranya adalah algoritma Root-Mean-Square Propagation (RMSprop) dan Stochastic Gradient Descent (SGD). Pada penelitian ini, pengujian dilakukan terhadap kedua metode tersebut untuk mengetahui kinerjanya pada klasifikasi Pneumonia Covid-19. Metode klasifikasi menggunakan Convolutional Neural Network (CNN) yang menerapkan 5 layer konvolusi dengan nilai filter 16, 32, 64, 128, dan 256. Proses pelatihan menggunakan 3.900 citra yang terdiri atas 1.300 citra pneumonia covid-19, 1.300 citra pneumonia, dan 1.300 citra normal. Sedangkan proses validasi menggunakan 450 citra dan proses pengujian mengunakan 225 citra. Berdasarkan uji coba yang telah dilakukan, implementasi algoritma optimasi RMSprop menghasilkan akurasi 87,99%, presisi 0,88, recall 0,86, dan f1 score 0,87. Sedangkan implementasi algoritma optimasi SGD menghasilkan akurasi 66,22%, presisi 0,69, recall 0,64, dan f1 score 0,67. Hasil ini memberikan informasi penting bahwa algoritma optimasi RMSprop menghasilkan kinerja yang jauh lebih baik daripada SGD pada klasifikasi Pneumonia Covid-19.
Copyrights © 2021