Journal of Data Science and Software Engineering
Vol 3 No 01 (2022)

Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Gambar X-Ray Penyakit Covid-19 dan Pneumonia

Fitria Agustina fitria (FMIPA ULM)
Andi Farmadi (Unknown)
Dwi Kartini (Unknown)
Dodon Turianto Nugrahadi (Unknown)
Ando Hamonangan Saragih (Unknown)



Article Info

Publish Date
28 Dec 2022

Abstract

Abstrak Pneumonia caused by the corona virus is different from ordinary pneumonia. One way to find out which pneumonia is caused by the corona virus is to do an X-ray. The disadvantage of this examination is that it requires a radiologist and the analysis time is relatively long. Therefore, to overcome this problem, deep learning methods can be used by implementing the Convolutional Neural Network (CNN) Algorithm method for X-ray image classification. The implementation of the Convolutional Neural Network (CNN) Algorithm is done by using training data of 4800 images which are trained using batch size values ​​of 16, 32, and 64. The train process with batch size values ​​of 16, 32 and 64 produces an average accuracy of 90%, 91% and 92%, while the loss values ​​are 0.22, 0.16 and 0.25. From this process it was found that batch 64 was the best loss and accuracy result for training data. The test data with batch values ​​of 16, 32, and 64 resulted in an accuracy of 76%, 82% and 76%, while the loss values ​​were 0.79, 0.53 and 0.63. The results of this manual testing of 30 photos contained 7 images that are not recognized by the model because of the images look similar to each other with an accuracy of 76%. From this process it was found that batch 32 was the best loss and accuracy result for testing data.

Copyrights © 2022






Journal Info

Abbrev

integer

Publisher

Subject

Computer Science & IT

Description

Journal of Data Science and Software Engineering adalah jurnal yang dikelola oleh program studi Ilmu Komputer Universitas Lambung Mangkurat untuk mempublikasikan artikel ilmiah mahasiswa tugas akhir. Terbit tiga kali dalam ...