Bulletin of Chemical Reaction Engineering & Catalysis
2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022)

Synthesis of ZnO-Fe3O4 Magnetic Nanocomposites through Sonochemical Methods for Methylene Blue Degradation

Nanda Saridewi (Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412)
Sri Komala (Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 1541)
Agustino Zulys (Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424)
Siti Nurbayti (Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 1541)
Latifah Tulhusna (Department of Public Health, Faculty of Health Science, UIN Syarif Hidayatullah Jakarta, Jl. Kertamukti No. 5 Ciputat, South Tangerang, Banten 15412)
Adawiah Adawiah (Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, South Tangerang 15412)



Article Info

Publish Date
30 Sep 2022

Abstract

Textile industry waste can pollute the aquatic environment because it contains dye contaminants with very stable properties that are difficult to degrade naturally. However, dye contaminants degradation can be carried out by photodegradation using ZnO-Fe3O4 magnetic nanocomposite photocatalysts. This study aims to synthesize ZnO-Fe3O4 magnetic nanocomposite through a sonochemical method. Then measure their photocatalytic activity in methylene blue degradation. The best ZnO-Fe3O4 magnetic nanocomposite is made of ZnO:Fe3O4 mass ratio of 4:1 with a crystal size of 31.058 nm, a hexagonal crystal phase and a particle size of 173.23 nm. The ZnO-Fe3O4 magnetic nanocomposites (4:1) provides optimum degradation capacity of methylene blue under halogen lamp irradiation of 99.56 mg/g at pH 13. Furthermore, the ZnO-Fe3O4 magnetic nanocomposites had good stability in 10 cycles reaction with a degradation capacity of 99.24-99.75 mg/g. The photocatalytic degradation of methylene blue by ZnO-Fe3O4 occurs through the formation of free radical species with hydroxyl radicals as the dominant species that play an important role in the degradation process. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Copyrights © 2022






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in ...