cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 686 Documents
Investigating Photochromic Behavior of Organic Dyes in Solution Form using Multilevel Factorial Design Najiah Nadir; Zaharah Wahid; Amir Akramin Shafie; Farah B. Ahmad; Mat Tamizi Zainuddin
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10496.353-365

Abstract

Photochromic compounds, namely spiropyran, spirooxazine, and naphthopyran, have received much attention, because of their high potential applications in various industrial fields. The aim of this study is to understand the behavior of three photochromic dyes in solution form via statistical approach. The types of dyes and solvents were screened using multilevel factorial design. From the analysis of variance results, it was found that the types of dyes and solvents used as well as their interaction have significant effects on the absorbance and photostability. The naphthopyran compound displayed highest change in absorbance intensity, followed by spiropyran and spirooxazine, when dissolved in isopropanol separately. However, the spirooxazine is the most photostable dye compared to naphthopyran and spiropyran, with ethanol as the solvent. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Study of Catalytic Properties of the HoxMg1-xAl2O4 Modified HZSM-5 Zeolite in Conversion of Methanol to C2-C4 Alkenes and p-Xylene Natavan I. Makhmudova; Eyyub S. Mammadov; Fuad Sh. Kerimli; Teymur M. Ilyasli; Nargiz Firudin Akhmedova; Sabit E. Mammadov
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.4.15115.725-732

Abstract

Selective conversion of methanol to C2-C4 alkenes and p-xylene is one of the appealing chemical routes. Currently, there are no effective catalysts for the co-production of C2-C4 alkenes and p-xylene from methanol. To date, modified medium-pore ZSM-5 zeolites are considered one of the excellent candidates for the development of selective catalysts for the conversion of methanol to lower alkenes and aromatic hydrocarbons. In this paper, nanosized (30-33nm) powders of HoхMg1-хAl2O4 spinel structure were obtained by the method of combustion of nitrate solutions of aluminium, magnesium, holmium, diethylmalonate and hydrazine monohydrate with the further calcination of nanopowders at 1000 °C. Obtained nanopowders used in the preparation of a solid-phase catalytic composition of HoхMg1-хAl2O4-HZSM-5. Various physico-chemical properties of the catalytic composition were investigated using X-ray diffraction (XRD), pyridine adsorption (BİO-RAD FTS 3000 MX) and low-temperature nitrogen adsorption (BET) techniques. The textural properties and acidity of the catalysts were altered by adjusting the nanopowder concentration (1.0-5.0 wt.%) in the catalytic composition. The conversion of methanol in the presence of the catalytic compositions was carried out in flow-type fixed-bed catalytic reactor at 400 °C, in the presence of nitrogen carrier gas with 1.0 h-1 flow rate. A correlation between the selectivity to C2-C4 alkenes and p-xylene with a ratio of Lewis (L) and Brønsted (B) acid sites and the volume of the catalyst pore, the amount of the modifier in the catalytic system has been established. As the amount of HoхMg1-хAl2O4 nanopowder increases, the ratio of B/L acid sites and the volume of the catalyst pore decrease, which play a significant role in the increase of the selectivity to C2-C4 alkenes and p-xylene. Maximum yield of C2-C4 alkenes (31.6%) and selectivity to p-xylene (80.5%) is achieved on a catalytic composition containing 5.0 wt.% HoxMg1-xAl2O4. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Complex Concentrated Alloy Catalyst of AlCrFeCoNi for Heterogeneous degradation of Rhodamine B Kiky Corneliasari Sembiring; Irgi Ahmad Fahrezi; Muhdarina Muhdarina; Ahmad Afandi
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20110

Abstract

The Fe-based catalysts have attracted good attention due to their earth abundance and low toxicity with good Fenton-like performance. However, the narrow pH working range and iron-containing sludge produced during the reaction drove the necessary of developing a potential catalyst in the corresponding application. High entropy alloy that now expands to complex concentrated alloy (CCA) represents a new class of material owing to a broader range of functional and structural properties. A new application of CCA as a catalyst for catalytic degradation of azo dyes has already been a scientific research hotspot. AlCrFeCoNi CCA powder has been successfully synthesized by mechanical alloying (MA) method using a vertical planetary ball mill. Based on the characterization, the catalyst possessed a spherical morphology with a particle size range of 3.5-12.6 mm. The catalyst exhibited photo-Fenton performance up to 85.3% which would be a promising Fenton-like catalyst for wastewater treatment. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
The Role of Concentration Ratio of TTiP:AcAc on the Photocatalytic Activity of TiO2 Thin Film in Reducing Degradation Products of Used Frying Oil Ummi Kaltsum; Affandi Faisal Kurniawan; Iis Nurhasanah; Priyono Priyono
Bulletin of Chemical Reaction Engineering & Catalysis 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.12.3.951.430-436

Abstract

The TiO2 thin film has been applied to reduce degradation products (free fatty acid/FFA and peroxide value/PV) in used frying oil under ultraviolet (UV) light irradiation. FFA and PV are degradation products in used frying oil that can cause various diseases in human. In this study, the TiO2 thin films were made from precursor solution with concentration ratio of titanium tetraisopropoxide (TTiP) and acetylacetone (AcAc) of 1:1, 1:2, 2:1, 2:3, and 3:2. The aim of this study is to investigate the effect of concentration ratio of TTiP and AcAc on the photocatalytic activity of TiO2 thin film in reducing FFA and PV of used frying oil. The spray coating method was used to deposit precursor solution of TiO2 onto glass substrate at 450 oC. All TiO2 thin films consist of spherical-like grain with dominant structure of TiO2 rutile. The band gap energy of TiO2 thin films was in the range 3.11-3.16 eV. Concentration ratio of TTiP and AcAc of 2:3 results in TiO2 thin film with highest photocatalytic activity in reducing FFA and PV of used frying oil. 
Characterization and Application of Molten Slag as Catalyst in Pyrolysis of Waste Cooking Oil Faten Hameed Kamil; Salmiaton Ali; Raja Mohamad Hafriz Raja Shahruzzaman; Intesar Razaq Hussien; Rozita Omer
Bulletin of Chemical Reaction Engineering & Catalysis 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.15.1.3973.119-127

Abstract

Chemical and physical analysis was performed to identify the molten slag composition and its ability to be used as alternative catalyst in pyrolysis of waste cooking oil. The implementation such type of catalytic material could be useful in reducing the process cost. To increase the efficiency (increase the active site) of molten slag, it was modified by acid washing that resulted in an increase in the acidity from 159 to 1224 µmol/g. The results showed that the yield of bio-fuel was increased and the product selective to n-C15 upon the modification of molten slag by acid treatment. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Ni Nanoparticles on Reducible Metal Oxides (Sm2O3, CeO2, ZnO) as Catalysts for CO2 Methanation Athirah Ayub; Hasliza Bahruji; Abdul Hanif Mahadi
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10948.641-650

Abstract

The activity of reducible metal oxide Sm2O3, CeO2, and ZnO as Ni nanoparticles support was investigated for CO2 methanation reaction. CO2 methanation was carried out between 200 °C to 450 °C with the optimum catalytic activity was observed at 450 °C. The reducibility of the catalysts has been comparatively studied using H2-Temperature Reduction Temperature (TPR) method. The H2-TPR analysis also elucidated the formation of surface oxygen vacancies at temperature above 600 °C for 5Ni/Sm2O3 and 5Ni/CeO2. The Sm2O3 showed superior activity than CeO2 presumably due to the transition of the crystalline phases under reducing environment. However, the formation of NiZn alloy in 5Ni/ZnO reduced the ability of Ni to catalyze methanation reaction. A highly dispersed Ni on Sm2O3 created a large metal/support interfacial interaction to give 69% of CO2 conversion with 100% selectivity at 450 °C. The 5Ni/Sm2O3 exhibited superior catalytic performances with an apparent phase transition from cubic to a mixture of cubic and monoclinic phases over a long reaction, presumably responsible for the enhanced conversion after 10 h of reaction. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Backmatter (Publication Ethics, Copyright Transfer Agreement for Publishing Form)
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.18018

Abstract

Formulation of SrO-MBCUS Agglomerates for Esterification and Transesterification of High FFA Vegetable Oil Prashant Kumar; Anil Kumar Sarma; Ajay Bansal; Mithilesh Kumar Jha
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.2.540.140-150

Abstract

Musa Balbisiana Colla Underground Stem (MBCUS) catalyst was treated thermally mixing with 5:1 w/w of Strontium Oxide (SrO) and the dynamic sites were reformed. The MBCUS-SrO showed sharper crystalline phases as evidence from XRD and TEM analysis. The composition and morphology were characterized from BET, SEM, EDX thermo-gravimetric analysis (TGA) and XRF analysis. The optimization process for biodiesel production from Jatropha curcas L oil (JCO) having high percentage of free fatty acids was carried out using orthogonal arrays adopting the Taguchi method. The linear equation was obtained from the analysis and subsequent biodiesel production (96% FAME) was taken away from the JCO under optimal reaction conditions. The biodiesel so prepared had identical characteristics to that with MBCUS alone, but at a lower temperature (200˚C) and internal vapour pressure. Metal leaching was much lower while reusability of the catalyst was enhanced. It was also confirmed that the particle size has little impact upon the conversion efficacy, but the basic active sites are more important. 
Fischer-Tropsch Synthesis over Unpromoted Co/ɣ-Al2O3 Catalyst: Effect of Activation with CO Compared to H2 on Catalyst Performance Phathutshedzo Rodney Khangale; Reinout Meijboom; Kalala Jalama
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.2519.35-41

Abstract

The effect of activating Co/Al2O3 catalyst by diluted CO or H2 on catalyst performance for Fischer-Tropsch reaction was investigated. The catalyst was prepared by incipient wetness impregnation of the support and characterized using BET N2 physisorption, SEM, and XRD analyses. The reduction behavior of the catalyst in presence of CO and H2 individually was evaluated using TPR analyses. The data reveal that CO activates Co/Al2O3 catalyst at a lower temperature than H2 and produces a catalyst with higher rate for liquid product formation. It also leads to higher methane selectivity probably due to some cobalt carbide formation. 
Application of Factorial Design of Experiments for the Continuous Hydrogenation of Enriched Castor Oil Methyl Esters Tulasi Sri Venkata Ramana Neeharika; Karna Narayana Prasanna Rani; Kasturi Venkata Sesha Adinarayana Rao; Thella Prathap Kumar; Rachapudi Badari Narayana Prasad
Bulletin of Chemical Reaction Engineering & Catalysis 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.8.2.5375.154-159

Abstract

Castor oil methyl esters contains nearly 90% ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid). Hydrogen-ated castor oil methyl esters finds several applications in coating, lubricants formulations and pharmaceu-tical areas. The present study reports a fast, simple, efficient and continuous hydrogenation of enriched castor oil methyl ester (ECME) using 10% Pd/C catalyst at different pressures and temperatures. The range of process conditions for this study varied from 30-60 °C, 5-15 bar with constant flow rate of 15 ml/min. The products were analyzed for fatty acid composition and iodine value (IV). The optimized pa-rameters were found to be a temperature of 30 °C, pressure 5 bar, and flow rate of 15 ml/min where maxi-mum hydrogenation of 98.47 % was obtained and the product showed an iodine value of 3.19. © 2013 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

Page 1 of 69 | Total Record : 686


Filter by Year

2007 2024


Filter By Issues
All Issue 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2024: Just Accepted Manuscript and Article In Press 2024 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue