cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of the Civil Engineering Forum
ISSN : 25811037     EISSN : 25495925     DOI : -
Core Subject : Social, Engineering,
Journal of the Civil Engineering Forum (JCEF) is a four-monthly journal on Civil Engineering and Environmental related sciences. The journal was established in 1992 as Forum Teknik Sipil, a six-monthly journal published in Bahasa Indonesia, where the first publication was issued as Volume I/1 - January 1992 under the name of Forum Teknik Sipil.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "VOLUME: XXII/1 - January 2013" : 6 Documents clear
THE USE OF NATURAL TRASS FROM SAYUTAN MAGETAN AND LIME FROM NGAMPEL BLORA AS THE MATERIAL OF CEMENT SUBSTITUTION FOR MORTAR MIXTURE Muhammad Nurzain; Iman Satyarno; Muslikh Muslikh
Journal of the Civil Engineering Forum VOLUME: XXII/1 - January 2013
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.18915

Abstract

Construction works in the Regency of Magetan, as well as in the mountain area far from capital cities and remote from transportation facilities, require large amount of material. In order to cope with the need of sand, people uses natural trass which are plenty to be found in the area. Test and research on its characteristic and strength with its potentials to be used as cement substitution have never been carried out. Lime was taken from Ngampel village, Blora as it is commonly sold in the area. The planned mixture of lime-trass paste was in the effort to obtain the best composition. The weight ratios used were 100%:0%, 80%:20%, 60%:40%, 40%:60%, 20%:80 and 0%:100%. The mortar mixture with cement substitution was 100%, 80%, 60%, 40%, 20% and 0%.The compressive strength of the lime-trash mixture was between 0.000 MPa and 2.545 MPa. The mortar compressive strength achieved was 0.373 MPa - 26.585 MPa. The test results of mortar compressive strength showed that the more cement substitution amount used, the less the compressive strength would be. The mortar compressive strength increased in line to the age of the mortar. The mortar tensile strength obtained was 0.000 MPa - 2.169 MPa. The block compressive strength obtained was 3.336 MPa - 3.403 MPa. Water absorbency of the block was 15.831% -16.056%.
ANALYSIS OF EFFECTIVE RAINFALL INTENSITY AND WORKING RAINFALL FOR BASIC WARNING CRITERIA DEVELOPMENT ON LAHAR FLOW EVENT Fitriyadi Fitriyadi
Journal of the Civil Engineering Forum VOLUME: XXII/1 - January 2013
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.18916

Abstract

After the eruption of Mount Merapi in October-November 2010, at least 140 million m3 volcanic material piled on the back of Merapi and some flows shortly on and after the eruption through the rivers that disgorge on peak of Merapi. To date, the impact from the silting of the river and falling volcanic material from the top of Merapi cause lahar flood which swept through areas far enough from the peak of Merapi. Given the dangers and impact caused by the lahar flow, as well as the limitations of existing data, the simplest method by perform rainfall data analysis is expected to predict lahar flow events in Gendol river.The analysis method performed by setting of standard rainfall for warning and evacuation were used for prediction of sediment disasters based on Guidelines for Development of Warning and Evacuation System Against sediment Disasters in Developing Countries, published by the Ministry of Land, Infrastructure and Transport, Infrastructure Development Institute - Japan, namely: (1) specifies serial rain which total amount of rain ≥ 80 mm, (2) Calculations on working rainfall (RW) and working antecedent rainfall (RWA), (3) Calculation on effective rainfall (RE), effective time, and effective rainfall intensity (IE), (4) Make a graph of effective rainfall intensity and working rainfall, (5) Predict the potential for debris flow by calculating the probability of debris flow occurrence on Gendol river.The research results showed that the number of reviewed serial rain with total value ≥ 80 mm is 9.28% of the whole serial rain, and 12.5% of them caused lahar flow in Gendol River. Debris flow occurrence probability on total rainfall amount of ≥ 80 mm that may occur on Gendol River amounted to 1.89%. This value represents less possibility of debris flow in Gendol River, this is due to the rain conditions in the Gendol Watershed different from the situation in Japan as well as the limitations of the available data. It is recommended for further research on the limitation of total rainfall in accordance with the conditions in Gendol Watershed by considering other parameters becoming the lahar flow controller factor. Further, it is necessary to perform the analysis using rain catchment method by averaging rainfall values on each of serial rain.
INTEGRATED TICKETING SYSTEM OF PUBLIC TRANSPORT IN JAKARTA VS VÄRMLAND, SWEDEN Teguh Himawan Ronggosusanto
Journal of the Civil Engineering Forum VOLUME: XXII/1 - January 2013
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.18917

Abstract

The heightened mobility of people in the DKI Jakarta province and surrounding area requires balance of the development public transport services. One of service attributes in public transportation is ticketing system. Currently, the ticketing system in Jakarta needs to be improved and still not integrated. Therefore, the importance to develop and implement a new integrated ticketing system to increase the competitiveness and attractiveness of public transports. It also gives an opportunity to the operators in order to implement several of ticket prices. There are some of barriers that faced by operators in development a new integrated ticketing system such as; institutional issue, resources integration, and financial problems. In order to describe and analyze the development of a new integrated ticketing system, this thesis uses a qualitative research approach and five sources of evidence i.e. documentation, archival records, an interview, direct and participant observations through a survey using the form of questionnaires that distributed to the public transport users. Further, this study also uses the case of Värmlandstrafik AB as the comparative study and the theoretical basis of the new services development as an approach to assess the possibility of implement a new integrated ticketing system. It aims to investigate the ticketing system phenomenon using information and data observations as materials to analyze, explore, and provide depth explanation. By analyzing data from a survey of passengers, this study gave a description and explanation related the characteristic and the travel behavior of passenger, also an assessment of ticketing system that underlies the development a new integrated ticketing system. Then, using the comparative case study of Värmlandstrafik AB that already implement an integrated ticketing system and the self-services in provision of public transport services gave an analysis what needs to prepare for implement a new integrated ticketing system consider to the organizational process.
SAND IRON MORTAR WITH ADDITION OF LEAD OXIDE Pb3O4 VARIATION AS RADIATION SHIELDING OF X AND GAMMA RAYS Yasinta Yerry Permana Sari
Journal of the Civil Engineering Forum VOLUME: XXII/1 - January 2013
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.18918

Abstract

To find out the ideal radiation shielding material from civil engineering and radiation aspect especially in the medical sector, in this research made sand iron mortar was made with mix proportion of 1:4 with addition variation of lead oxide Pb3O4 that are 0% (M1), 20% (M2), 30% (M3), and 40% (M4) of loose volume of sand iron and also Viscocrete-10 addition 0.6% of cement weight. Water cement ratio used for M1, M2, M3, and M4 are 0.4, 0.41, 0.44, and 0.48 respectively. Sand iron and lead oxide Pb3O4 as fine aggregate are tested to obtain its density and unit weight as a basis to calculate the mix design. The specimens of each variable of mortar are tested on its physical and mechanical properties, namely weight per m3, compressive strength, tensile strength, and water absorption with the number of specimens are 3 (three) of each variable of mortar. After that, the specimens are tested with Gamma radiation with energy 1170 keV, 1330 keV (Cobalt 60), 662 keV (Cesium 137), and 323 keV (Cr 51) and X Ray radiation with energy 70 kV and 90. The specimens are block shaped size 10 cm x 10 cm with thickness variation of 1 cm up to 12 cm.The result shows that the density of sand iron and lead oxide Pb3O4 are 3,8259 and 8,4693 respectively and the unit weights are 1,965 gr/cm3 and 2,535 gr/cm3 respectively. Weight per m3 of mortar was increased caused by the increasing of lead oxide Pb3O4 on mortar. The compressive strength significantly increased starting on M2 (37,328 MPa) from M1 (7,594 MPa) and a bit decreased on M3 and M4, i.e. 32,188 Mpa and 30,144 Mpa respectively caused by the increase of water cement ratio. The value of water absorption was decreased as an effect of lead oxide Pb3O4 addition. From the result of Gamma radiation test, it shows that the higher the density, the higher the attenuation coefficient of the material and if the energy increases, the attenuation coefficient of the material decreases except at the energy above 1200 keV where the attenuation coefficient increases back as a result of a pair production phenomenon. The attenuation coefficient values of M1, M2, M3, and M4 are 0.102 cm-1, 0.145 cm-1, 0.152 cm-1, and 0.184 cm-1 respectively for energy 1330 keV; 0.060 cm-1, 0.104 cm-1, 0.120 cm-1, and 0.155 cm-1 respectively for energy 1170 keV; 0.157 cm-1, 0.212 cm-1, 0.242 cm-1, and 0.284 cm-1, respectively for energy 662 keV, and 0.202 cm-1, 0.309 cm-1, 0.330 cm-1, and 0.426 cm-1 respectively for energy 323 keV. The different result shows rom X ray radiation test whereas occurred inaccurate data as a result of scattering caused by wide beam owned by X ray so that the result cannot be compared with the result of Gamma radiation test. So, the results of X ray radiation test which can be used are the X ray photo of mortars that shows the homogeneity of each variable of mortar. From the effectiveness aspect as a radiation shielding, mortar M4 is the most effective because it has the biggest attenuation coefficient value.
HYDRAULIC SIMULATION OF FLASH FLOOD AS TRIGGERED BY NATURAL DAM BREAK Yanuar Tri Kurniawan
Journal of the Civil Engineering Forum VOLUME: XXII/1 - January 2013
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.18914

Abstract

On January 1st, 2006 flash flood disaster (in Indonesia is known as banjir bandang) occurred in Kaliputih River, Jember District of East Java Province. This disaster resulted in more than 80 people were killed and hundreds were injured. The disaster was caused by natural dam break. The natural dam was formed by landslide due to heavy rainfall. After the January 2006 disaster, new cracks and crevices were found in the upstream area of Kaliputih River. Based on this condition, it cannot be disregarded to avoid repetition of similar disaster in the future. Therefore, it is required to conduct mitigation efforts in order to anticipate similar disaster in the future. One of the mitigation efforts is modeling simulation of the past event. The understanding which is obtained from the simulation can be used as reference to arrange other mitigation efforts plan and action .Modeling simulation of the January 2006 flood was conducted by involving 1-D model of HEC-RAS version 4.1.0 software. Flood hydrograph was obtained by analyzing related hydrologic aspects using Nakayasu method. The natural dam model was interpreted from field observation and related references. Some assumptions related to study constraints were taken. Model calibration was conducted by repeating simulation using fixed discharge and parameter values in a certain range. The observations were carried out to the maximum water surface elevation and it was traced to the downstream river.Calibration model result showed that the height of natural dam significantly influence changes of water surface elevation at control point. Tracing of flood result in reconstruction of January 2006 flood showed the conformity with the real event. It was observed from the arrival time of flood at certain location. From obtained results, it can be concluded that simulation modeling gave the acceptable results.
THE EFFECT OF VARIATION CONCRETE CUBE OF AXIAL LOAD ON ULTRASONIC PULSE VELOCITY TRANSMITTER Faqih Ma’arif; Priyosulistyo Priyosulistyo; Ashar Saputra
Journal of the Civil Engineering Forum VOLUME: XXII/1 - January 2013
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, UGM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.18919

Abstract

Nowadays, Non Destructive Tests have been applied in some quality evaluation of existing concretes on site. One of the Non Destructive Test (NDT) methods is the application of the Ultrasonic Pulse Velocity (UPV) method. In general, utilizations of UPV as one of NDT methods are to estimate the strength of concrete, to detect the presence of crack, to measure the homogeneity of concrete and the thickness of concrete plate, and also to estimate the diameter of steel attached by using UPV.Concrete cube specimens consisted of four samples of 150x150 mm, which were control cube (KB-I), cube II (KB-II), cube III (KB-III) and cube IV (KB-IV) and were randomly taken. UPV test with a direct method was applied before and during axial load. The resultant data of pulse velocity were then calculated and analyzed by using a statistic program. The type of load applied was constant axial (0,05P0 up to 0,7P0).The test result showed that the increase of ultrasonic pulse velocity effect on cube II due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0, if compared to the one without axial load, the results were 4,17% and 11,60 respectively. The decrease of pulse velocity on cube III due to axial load variation was at 0,25P0 and 0,7P0; if compared to the one without axial load the result were 0,47% and 20,87% respectively. And the increase of ultrasonic pulse velocity effect on cube IV due to axial load variation was optimum at 0,35P0 and was minimum at 0,7P0; if compared to the one without axial load the result were 0,52% and 21,63% respectively. The maximum limit of effective load step at structure experiencing compressive load ranged from 0,35P0 up to 0,4P0. At high stress level, the crack that occurred was spread evenly to the concrete cubic components and was giving an exponential equation y = y= 5,11e0,0467x. The result of analysis of cubes II, III and IV showed that on paired sample t-test 0,00<0,025, the significant value (2-tailed) (0,00)<(0,025); meaning there was a difference of pulse velocity due to axial load variation on concrete cube.

Page 1 of 1 | Total Record : 6