cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surakarta,
Jawa tengah
INDONESIA
SAINS TANAH - Journal of Soil Science and Agroclimatology
ISSN : -     EISSN : -     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 11 Documents
Search results for , issue "Vol 16, No 1 (2019): June" : 11 Documents clear
Effect of Bottom Ash and Cow Manure Compost on Chemical Properties of Soil at New-Established Rice Field Nurmegawati Nurmegawati; Iskandar Iskandar; Sudarsono Sudarsono
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v16i1.22366

Abstract

The conversion of dryland to rice field at Sumatra Island, Indonesia was generally developed on marginal lands with Ultisols and Oxisols soil types. Those soil types contained high iron (Fe) and aluminum (Al), but low phosphorus (P) and potassium (K). That is because the changes in the process resulted from submerging the soil. For example, the decrease of redox potential, ion reduction from Fe3+ to Fe2+, and Mn4+ into Mn2+.  Those compounds will be dissolved and can be absorbed by plants thus causing toxicity. The objective of the study was to assess the effects of bottom ash and cow manure compost at the various doses on soil chemical properties and rice yield on the new-established rice field. This research used factorial design with two factors in Completely Randomized Design. The factors were a dose of bottom ash and cow manure compost, with three replications. The results showed. The addition of bottom ash and cow manure compost at the dosage in this study was not able to reduce the levels of FeDTPA and MnDTPA at newly established rice fields.  However, the application of cow manure compost significantly increased soil pH,  exchangeable cation (K, Na, Ca), base saturation and decreased exchangeable-H. The addition of bottom ash does not affect paddy yield, while cow manure compost up to 10 tons ha-1 increased panicle and straw dry weight.
Effect Balance of Bokashi and Inorganic Fertilizer on Growth, Simplicia Yield, and Content Of Sinensetin of Kumis Kucing (Orthosiphon aristatus (Blume) Miq.) Yoviana Erdhika Adiarti; Bambang Pujiasmanto; Widyatmani Sih Dewi
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v16i1.25102

Abstract

Growth potential, simplicia yields, and secondary metabolites of sinensetin varieties kumis kucing can be increased through fertilization management. The aim of this research was to examine the effect balance of bokashi and inorganic fertilizer on growth, simplicia yields and secondary metabolites of sinensetin kumis kucing varieties. The design of research was a split-plot field experiment, with the main plot were varieties (Orsina 1 and Orsina 2) and subplots in bokashi fertilization of goat manure (control, bokashi 15 tons ha-1, bokashi 15 tons ha-1 + 100% inorganic fertilizer dose recommendation, bokashi 15 tons ha-1 + 50% recommended dosage of inorganic fertilizer and 100% recommended inorganic fertilizer). Inorganic fertilizer recommendations consist of Urea 100 kg ha-1, SP36 200 kg ha-1, and KCl 100 kg ha-1. The results showed that the use of bokashi 15 tons ha-1 + 50% inorganic fertilizer increased growth. Besides it also produced the highest simplicia of 48.57 g plant-1 and the highest secondary metabolite of 0.045% plant-1 in Orsina 1. Both kumis kucing varieties did not show growth differences and yields. Bokashi fertilizer can reduce the use of inorganic fertilizers in the growth and simplicia yields and potentially increase sinensetin of kumis kucing.
Actual Evapotranspiration Model Based on the Irrigation Volume of the Maize Fields on Alfisols Dwi Priyo Ariyanto; Komariah Komariah; Sumani Sumani; Ilham Setiawan
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v16i1.25218

Abstract

Evapotranspiration data are considered important to determine volume and schedule of the irrigation. The purpose of this study is to determine the actual evapotranspiration model based on the volume of the irrigation to obtain an accurate evapotranspiration value on Alfisols with maize plantation. This research is conducted in the experimental field Jumantono subdistrict, Karanganyar regency by the experiment of the maize (Zea mays) on Alfisols. The evapotranspiration model uses the soil correction factor (x) and the irrigation volume (% ETc). The soil correction factor (X) is calculated by linear regression on actual evapotranspiration (ETa) with crop evapotranspiration (ETc). ETc using reference evapotranspiration (ETo) using the Penman-Monteith model. The results showed that ETa was smaller than ETc in all treatments. The models that can be produced in this study are 3 models. All models applied to produce a determination coefficient > 90%, which all models have a positive relationship. The best actual evapotranspiration model was in total model uses ETa = {0.0403 + (0.0085 × Irrigation volume)} × ETc, for daily estimation and total one planting estimation;  weekly estimation using the weekly model using ETa = {0.4428 + (0.0054 ×Irrigation volume)}× ETc. The errors of both models are ± 1%.
Abiotic Stress and Biofertilizer on The Pereskia bleo (Kunth) DC. Against Growth, Proline, and Antioxidants Intan Christin Dullah; Sulandjari Sulandjari; Supriyono Supriyono
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v16i1.25158

Abstract

Pereskia bleo is a spiny bush from the genus Pereskia and family Cactaceae. Its leaves are shiny green, flowering, and fruitful. Some researchers to indicate that P.bleo leaves contain high antioxidants, anti-cancer, and are traditionally used for diabetic, hemorrhoids, hypertension, and gastric pain. The aim of this study was to determine the effect of salinity stress and water volume as well as the role of biofertilizer on the growth of Pereskia bleo and antioxidant content. Using Nested design (completely randomized factorial) with NaCl treatment; 0 ppm, 5 ppm, 10 ppm, and biofertilizer; 5 ppm, 10 ppm, each nested in a water volume of 500 ml, 300 ml and 150 ml per polybag. Each treatment was repeated three times, resulting in a total sample of 54 plants. Meanwhile, the findings indicate that abiotic pressure suppresses growth and proline, but not on antioxidants. There is an interaction between salinity and biofertilizer against antioxidants. Abiotic Stress can increase the antioxidant content.
A Study of Light Intensity and Fertilizer on Soybean in Albizia chinensis Agroforestry System Zulfikar Affandi; Djoko Purnomo; Supriyono Supriyono
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v16i1.25872

Abstract

One of the efforts to solve the decreasing of agriculture land area caused by land use change is through agroforestry system (AF), such as the cultivation among the Albizia chinensis trees. This research, along with the experiment, aims at studying the light characteristic of 1.5 years oldAlbizia c and the effect of fertilization on the growth of soybean and testing the soybean yield of Dega 1 varieties in agroforestry system based on Albizia c. Using the split-plot Randomized Block Design (RBD) as the experiment, the intensity of light was employed as the main plot whereas the fertilizer was used as the subplot in this study. There were four levels of light intensity:  land with high light intensity (lands outside AF), rather high light intensity (radiation transmission fraction (RTF) among Albizia c 1425 ha-1 density), medium-high light intensity (RTF among 2850 Albizia c density with pruned canopy), rather low light intensity (RTF among 2850 Albizia c  density with unpruned canopy). As the subplot were some various fertilizers such as Albizia c litter, Albizia c litter + phosphorus (P) + potassium (K), and without any fertilization. Totally 12 treatments were obtained and each of those treatments was replicated three times, consequently consisting of 36 experiment units. The result of this research shows that  Albizia c was exceedingly potential for the soybean cultivation with AF system. The passing light under the canopy (RTF) depended on the distance between each tree and could be improved by pruning the canopy. The increasing RTF increased vegetative and generative growth. The highest soybean production (3.3 tons ha-1) could be achieved in 2850 trees ha-1 density with pruned canopy (RTF: 49% equals to 28440 lux) compared with biomass production in open land (3.9 tons ha-1).
Environmentally Sound Spatial Management Using Conservation and Land Evaluation Approach at Sloping Lands in Humid Tropic (A case study of Antang Kalang sub-district, Central Kalimantan, Indonesia) Andy Bhermana; Susilawati Susilawati
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1757.088 KB) | DOI: 10.20961/stjssa.v16i1.24004

Abstract

The main problem faced by sloping lands in the humid tropic includes land degradation influencing natural ecosystem damage broadly. Land conversion and improper land-use have been widely recognized as the main cause of environmental damage since the demands for agricultural lands become greater than land resource available. The objective of this study was to determine the concept of appropriate land-use planning through environmentally sound spatial management in order to prevent land and environmental degradation.  The sub-district of Antang Kalang was chosen as study area representing sloping lands in humid tropic that have a susceptibility to erosion. Conservation approach by the use of USLE erosion risk prediction model and land evaluation through land suitability classification was used in this study. The geographic information system (GIS) and remote sensing (RS) technology were applied to generate spatial basic information and to assist in spatial analysis. Two crops, upland rice, and rubber,  representing food crop and estate p have been selected based on the local resource that has been existed since a long time ago. The result of spatial analysis shown that the arable land for agricultural practices covers  9,039 hectares (23.19%) while for non-arable land, it is allocated for forest preservation with total areas 29,934 hectares (76.81%). Land-use planning and land resources management involving conservation aspect and land suitability evaluation should be taken into account for farming practice at sloping lands areas since the value of soil loss potential appears as an indicator of erosion risk. Permanent cultivation system and the intercropping farming system is the option of recommended agricultural practice at sloping lands in the humid tropic that have a susceptibility to erosion.
Remediation of Chromium Contaminated Soil by Phyto-Bio System (PBS) Application Retno Rosariastuti; Selly Maisyarah; Sudadi Sudadi; Sri Hartati; Purwanto Purwanto
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/stjssa.v16i1.24932

Abstract

Chromium polluted water was increased as the result of the growth of the industries, due to their industrial waste were most likely contain heavy metals, especially textile industrial waste that was discarded to the rivers. This research aimed to study the removal of chromium levels in soil used the symbiosis between plant and bacteria. Soil sample contained with 4.33 mg kg-1 and the irrigation water sample contained with 1.09 mg l-1 of total chromium. This research design was factorial with Randomized Complete Block Design as the based design There were 3 factors in this study: 1.  inorganic fertilizer (P): P0: without inorganic fertilizer, P1: with inorganic fertilizer; 2. chelator (B):B0: without chelator, B1: with chelator Rhizobium sp I3, B2: with chelator manure; 3. Plant (T): T0 without plant, T1: with plant. Data were analyzed by statistical analysis using ANOVA continued by T-test or Duncan Multiple Range test and correlation test. The result showed that the remediation process reduced chromium levels in soil with the removal effectivity up to 71.90% on the treatment combination of NPK fertilizer+manure+plant while removal effectivity on plant-only treatment was 55.66%. The chromium levels in Fimbristylis globulosa were in the range from 1.82–3.15 μ g-1, it indicated that Fimbristylis globulosa was a feasible plant for bioremediation. Fimbristylis globulosa grew well and has the ability to absorb chromium, especially by combining it with Rhizobium sp I3and the chromium uptake in roots was higher than shoots.
Amendments on Salinity and Water Retention of Sand Base Rootzone and Turfgrass Yield Rahayu Rahayu; Yang Geun Mo; Choi Joon Soo
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1032.614 KB) | DOI: 10.20961/stjssa.v16i1.28132

Abstract

This research was column pot experiment with turfgrass was Kentucky bluegrass (Poa pratensis) plant irrigated saline irrigation and the column soaked in saline water. Rootzone profile consisted of 20 cm using saline lake dredged up sand. The sand amendments of the root zone were soil, zeolite, bottom ash, and peat. The mixtures of topsoil were; 90% sand + 10% peat moss, 80% sand + 10% soil + 10 % bottom ash, 80% sand + 20% soil, 90% sand + 5% peat + 5% zeolite, and 80% sand + 20% bottom ash. Interruption layer with coarse sand with diameters over 2 mm of 20 cm and 10 cm loamy soil as the bottom layer of the column. The result showed that Kentucky bluegrass could grow in sand based growing media amended by peat, sandy loam soils, bottom ash and zeolite being irrigated by 2 dS m-1 saline water. Sand-based growing media amended by peat resulted in the highest clipping weigh but showed the highest salt accumulations. Sand amended by bottom ash and applied gypsum decreased clipping weigh, decreased SAR and increased calcium (Ca) when compared to the soil + peat (SP).  Sand amended by zeolite and gypsum decreased clipping weight, decreased sodium adsorption ratio (SAR) and higher Ca. Higher soil moisture retention of growing media promoted the growth of Kentucky bluegrass in spring, and lower moisture content promoted the growth in summer and fall season.
Physiology and Biochemistry of Fe Excess in Acidic Asian Soils on Crop Plants Sangita Dey; Saradia Kar; Preetom Regon; Sanjib Kumar Panda
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1610.331 KB) | DOI: 10.20961/stjssa.v16i1.30456

Abstract

Proper transport of iron is very crucial for plant growth and development as it participates in various complex processes in plants like absorption, translocation etc. It also acts as an important component for processes like photosynthesis and respiratory electron transport chain in mitochondria, chloroplast development, and chlorophyll biosynthesis. Asian soils suffer from iron toxic condition and that adversely affects the growth and yield of the plant. This review describes the importance of iron in plant growth and different strategies adopted by plants for iron uptake. It also focuses on different methods and approaches on how plant can cope against acidic soils.
Peanut Growth and Gynophore Formation on Boron and Phosphor Applications Novita Rahman; Suntoro Suntoro; Amalia Tetrani Sakya
SAINS TANAH - Journal of Soil Science and Agroclimatology Vol 16, No 1 (2019): June
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1096.16 KB) | DOI: 10.20961/stjssa.v16i1.25372

Abstract

Soil is an important factor in peanut cultivation as a nutrient provider. In recent years, peanut production has dwindled due to the decrease in soil fertility. Boron as a micronutrient can maximize peanut production through optimum viability of flowers and phosphor as essential nutrients for peanut to improve its pod filling. This study aims to examine the application of boron and phosphor growth and formation of peanut gynophore. The research was conducted from September 2017 to January 2018 in Sambirembe village, Magetan. The experiment uses randomized complete block design (RCBD) with the first factor applied on the dose of boron fertilizer (0, 1, 2 3 kg ha-1) and the second was on the dose of phosphor fertilizer (0, 75, 100, 150 kg ha-1), repeated 3 times. Boron application resulted in the highest plant height at the fourth week by 10.45%. The application of 1 kg ha-1 boron without phosphorus (0 kg ha-1) yielded the highest gynophore formation, i.e. 42 gynophore formation.

Page 1 of 2 | Total Record : 11