cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 2 Documents
Search results for , issue " Vol 4, No 2 (2018): February" : 2 Documents clear
Flexural Behaviour of Lightweight Foamed Concrete Beams Reinforced with GFRP Bars Abd, Suhad M; Ghalib, Dhamyaa
Civil Engineering Journal Vol 4, No 2 (2018): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1370.136 KB) | DOI: 10.28991/cej-030991

Abstract

Lightweight foamed concrete is a type of concrete characterized by light in self-weight, self-compaction, self-leveling, thermal isolation, and a high ratio of weight to strength. The advantages of GFRP bars include lightweight, high longitudinal tensile strength, non-conductivity, and resistance to corrosion. This study investigated the behavior of LWFC beams reinforced with GFRP bars under flexural loading. A total of four reinforced concrete beams were cast, where it consisted of two LWFC beams and two normal weight concrete beam which acted as control specimen. One of the lightweight foamed concrete beams and the normal concrete beams is reinforced with two GFRP bars and the other reinforced with two steel bars. All beams were designed with singly reinforced of two bars of diameter 12mm. The LWFC beams were with cement to sand ratio (1:1) and average dried density of 1800± kg/m^3. The main variables considered in this study was type of concrete and type of reinforcement. The flexural parameters investigated are ultimate load, crack width, ductility, deflection and stiffness. The lightweight foamed concrete beam reinforced with GFRP bars showed deflection and crack width greater than in beam reinforced with steel bars due to the low modulus of elasticity of GFRP bars.
Hardness Optimization of Heat Treatment Process of Bucket Teeth Excavator Suryo, Sumar Hadi; Adi Widyanto, Susilo; Paryanto, Paryanto; Mansuri, Aly Syariati
Civil Engineering Journal Vol 4, No 2 (2018): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (866.142 KB) | DOI: 10.28991/cej-030992

Abstract

Excavator is heavy equipment that usually used in construction and mining works. Bucket teeth which are located in the tip of bucket excavator are used for digging works. They are easily damaged by direct contact with the media. One of the material used in bucket teeth excavator is mild carbon steel that has carbon content between 0.33%-0.5%. However, the hardness value of this material is not yet meets the standard of bucket teeth excavator so the optimum hardness value based on its heat treatment should be known. Besides that, its tensile, impact strength, and micro structure in optimum condition will also know. Optimization method was done through Taguchi experimental design with L9 orthogonal and ANOVA (Analysis of Variance). Factors or parameters in this research were heating temperature, holding time, quenching media, and tempering temperature. In this experiment, nine specimens of mild carbon steel were tested by different heating temperatures (850oC, 875oC, 900oC), different holding times (60, 90, and 120 minutes), different quenching medias (oil, water, and salt water), and different tempering temperatures (250oC, 450oC, 650oC). Calculation of Taguchi method and confirmation experiment showed that the optimum parameters of hardness are 875oC heating temperature, 60 minutes holding time, water quenching media, and 250oC tempering temperature. Meanwhile, ANOVA test showed a result that the four factors had an effect on the bucket teeth excavator hardness.

Page 1 of 1 | Total Record : 2


Filter by Year

2018 2018


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue