cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,246 Documents
Comparison of Coupled and Uncoupled Consolidation Equations Using Finite Element Method in Plane-Strain Condition Baqersad, Mohamadtaqi; Eslami Haghighat, Abbas; Rowshanzamir, Mohammadali; Mortazavi Bak, Hamid
Civil Engineering Journal Vol 2, No 8 (2016): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1273.479 KB)

Abstract

In the current paper, the consolidation settlement of a strip footing over a finite layer of saturated soil has been studied using the finite element method. In Biot’s coupled consolidation equations, the soil deformation and excess pore pressure are determined simultaneously in every time step which refers to the hydro-mechanical coupling. By considering a constant total stress throughout the time and by assuming that volume strain is a function of isotropic effective stress, uncoupled consolidation equations can be obtained using coupled consolidation equations. In these uncoupled equations, excess pore pressure and deformation are determined separately. In this approach, the excess pore pressure can be identified in the first stage. Using the calculated excess pore pressure, the soil deformation is determined through effective stress-strain analyses. A computer code was developed based on coupled and uncoupled equations that are capable of performing consolidation analyses. To verify the accuracy of these analyses, the obtained results have been compared with the precise solution of Terzaghi’s one-dimensional consolidation theory. The capability of these two approaches in estimation of pore water pressure and settlement and to show Mandel-Crayer’s effect in soil consolidation is discussed. Then, the necessity of utilizing coupled analyses for evaluating soil consolidation analysis was investigated by comparing the coupled and uncoupled analyses results.
Road Pricing Effect on the Emission of Traffic Pollutants, a Case Study in Tehran Hadji Hosseinlou, Mansour; Zolfaghari, Abbas; Yazdanpanah, Mahdi
Civil Engineering Journal Vol 2, No 7 (2016): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (902.479 KB)

Abstract

Road pricing is one of the main purposes of traffic management policies in order to reduce personal car use. Understanding the behaviour of drivers under the impact of the road pricing policy, can assist transportation planners in making better and more efficient decisions. This research aims at investigating the reactions of private car users to road pricing using stated preference (SP) method on the one hand, and on the other hand, studies the road pricing effect on traffic flow and pollutants. To this aim, the acceptance rate of pricing, which is obtained from modeling of survey data, as well as real traffic flow data in Shahid Hemmat Highway in Tehran, Iran, are applied as the simulation software input. Based on the results of this research, at the lowest price (TN11000), the contribution of toll acceptance is equal to 64/91 percent. The fuel consumption rate at this price decreases to 49/91% and the emission rate of CO2, NOx, particle material (PM) and volatile organic compounds (VOCs) pollutants decrease to 56.82%, 49.46%, 36.8% and 63.17%, respectively. At the highest price (TN10000), toll acceptability, fuel consumption, CO2, NOx, PM and VOC emission rates decrease to 5.47%, 3.57%, 3.98%, 2.85%, 1.22% and 4.86%, respectively.
Numerical Modeling of Local Scour at the Junction of Open Channels in Flow3D Numerical Model Shamohamadi, Behnam; Mehboudi, Ali
Civil Engineering Journal Vol 2, No 9 (2016): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (660.616 KB)

Abstract

At the junction of channels, the two corresponding flows of the main and submain channels are diverted from their main alignment and the form and the flow properties change at the junction. Changes in water level profile and depth of flow, velocity distribution, stagnation zone, constriction of public channel, energy loss and also formation of hydraulic jump are among the most important hydraulic variables in this location. For accurate recognition of hydraulic properties of flow and local scour at the junction of channels, physical models are made and constructed. Setting up a physical model requires many conditions and high costs which sometimes are not justifiable, hence appropriate numerical models could be proposed for such options. In this research using Flow3D numerical model, the numerical modelling of the flow has been performed in 3D form utilizing the available laboratory information which is calibrated and validated and accuracy of the numerical modelling, and the corresponding relative error are determined. The calibration and validation of the numerical model results demonstrate that the maximum relative error of the numerical model when simulating for maximum values of scour depth at the flow junction is equal to 8.2%. Also using the numerical model it was found that with passage of time in numerical model, from .....
Establishment of a Stochastic Model for Sustainable Economic Flood Management in Yewa Sub-Basin, Southwest Nigeria Agbede, O.A; Aiyelokun, Oluwatobi
Civil Engineering Journal Vol 2, No 12 (2016): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (732.945 KB)

Abstract

Of all natural disasters, floods have been considered to have the greatest potential damage. The magnitude of economic damages and number of people affected by flooding have recently increased globally due to climate change. This study was based on the establishment of a stochastic model for reducing economic floods risk in Yewa sub-basin, by fitting maximum annual instantaneous discharge into four probability distributions. Daily discharge of River Yewa gauged at Ijaka-Oke was used to establish a rating curve for the sub-basin, while return periods of instantaneous peak floods were computed using the Hazen plotting position. Flood magnitudes were found to increase with return periods based on Hazen plotting position. In order to ascertain the most suitable probability distribution for predicting design floods, the performance evaluation of the models using root mean square error was employed. In addition, the four probability models were subjected to goodness of fit test besed on Anderson-Darling (A2) and Kolmogorov-Smirnov (KS). As a result of the diagnostics test the Weibul probability distribution was confirmed to fit well with the empirical data of the study area. The stochastic model  generated from the Weibul probability distribution, could be used to enhance sustainable development by reducing economic flood damages in the sub-basin.
Laboratory Investigation of Materials Type Effects on the Microsurfacing Mixture Shafaghat Lonbar, Mohammad; Nazirizad, Mahmoud
Civil Engineering Journal Vol 2, No 3 (2016): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (503.883 KB)

Abstract

Pavement preservation is a quintessential system of treating pavements at the optimum time to maximize their useful life. One of the preventive maintenance treatment options is using microsurfacing system as the acceptable and economical solution. This study presents a laboratory investigation of aggregate type and adhesive materials and their relationship to microsurfacing pavement properties such as cohesion, wet track abrasion loss, excess asphalt and compaction. The method of this study relies on ISSA A143, using the Cohesion 30 min and 60 min, Wet track abrasion loss, Loaded-wheel excess asphalt and finally Loaded-wheel compaction. The verification of this method was achieved through measuring the various factors of specimens constructed in laboratory using two different aggregate sources as river and mountain aggregates and two binders as CSS-1h and CQS-1h. The results showed that mixes contain riverine aggregates showed more cohesion properties. Base on wet track test results mixes, mixes containing riverine type aggregate were more resistant to abrasion. In addition CQS-1h emulsion showed better adhesiveness against abrasion in both types of aggregates in asphalt mixes. With increased amount of emulsions in mixes, load wheel values increased as well. Loaded wheel compaction test results confirmed that river based aggregates are more susceptible to rutting failure. The results of wheel tracking test illustrated that CSS-1h emulsion applied in mixes had better resistance to rutting.
Application of Hyperstatic Reaction Method for Designing of Tunnel Permanent Lining, Part II: 3D Numerical Modelling Hassani, Rahim; Basirat, Rouhollah
Civil Engineering Journal Vol 2, No 6 (2016): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1821.348 KB)

Abstract

Underground structures often have abrupt changes in structural stiffness or ground conditions such as junctions of tunnels, tunnel portal in slopes, and niches in road tunnels. At these locations, stiffness differences may subject the structure to differential movements and generate stress concentrations. Because of adversity in these issues, they need a three dimensional analysis. This paper proposes a numerical approach to the hyperstatic reaction method (HRM) for three dimensional analysis of permanent tunnel linings. In this paper, three dimensional numerical modelling is performed by considering hyperstatic reaction concepts. Designing is done for Manjil-Rudabar freeway project, Tunnel No. 2. The numerical analyses performed for Operational Design Earthquake (ODE) and Maximum Design Earthquake (MDE) loading conditions. Then interaction diagram between axial force and bending moment used for investigating the capacity of tunnel lining. The numerical results show that although more axial forces are created in tunnel lining for ODE condition, but the points in the P-M diagrams are located in the furthest distance to the diagram border (tunnel supporting system); because of less bending moment in this condition. Therefore, the safety factor in ODE condition is more than MDE condition. This numerical processing presented that the HRM is a proper, fast, and practical method for tunnel designers.
Finite Element Modeling of Axially Loaded CFRP-Confined Rectangular Reinforced Concrete Columns Akbarpour, Hamed; Akbarpour, Masoumeh
Civil Engineering Journal Vol 2, No 8 (2016): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1484.093 KB)

Abstract

This paper investigates numerically the behaviour of rectangular RC columns strengthened with carbon fiber reinforced polymer (CFRP) composites under uniaxial loading. For this a reason, a parametric study is conducted and the effects of CFRP layers number, compressive strength of unconfined concrete, and fiber orientation on the behaviour of such columns have been studied. The number of CFRP layers has been changed from one to five layers while the fibers are oriented transversely. Compressive strength of unconfined concrete has been increased from 26 MPa to 45 MPa. In addition, three different fiber orientations are considered. The results show that an increase in the number of CFRP layers would enhance the ultimate strength of specimens. Although increasing the number of layers would not increase the ultimate strength of specimens exponentially, but the rate of strength gain would also decrease. Moreover, it is shown that lateral strains increase as the layer number increases. The effect of unconfined concrete strength on the ultimate strength is less for low strength concrete than high strength concrete. Evaluating the effect of fiber orientation shows that the maximum ultimate strength is obtained from transverse orientation and as the angle of orientation increases, the ultimate strength decreases.
Analysis of RC Continuous Beams Strengthened with FRP Plates: A Finite Element Model Sakr, Mohamed A.; Khalifa, Tarek M.; Mansour, Walid N.
Civil Engineering Journal Vol 2, No 11 (2016): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1175.693 KB)

Abstract

Strengthening of reinforced concrete (RC) beams with externally bonded fibre reinforced polymer (FRP) plates/sheets technique has become widespread in the last two decades. Although a great deal of research has been conducted on simply supported RC beams, a few studies have been carried out on continuous beams strengthened with FRP composites.  This paper presents a simple uniaxial nonlinear finite-element model (UNFEM) that is able to accurately estimate the load-carrying capacity and the behaviour of RC continuous beams flexurally strengthened with externally bonded FRP plates on both of the upper and lower fibres. A 21-degree of freedom element is proposed with layer-discretization of the cross-sections for finite element (FE) modelling. Realistic nonlinear constitutive relations are employed to describe the stress-strain behaviour of each component of the strengthened beam. The FE model is based on nonlinear fracture mechanics. The interfacial shear and normal stresses in the adhesive layer are presented using an analytical uncoupled cohesive zone model with a mixed-mode fracture criterion. The results of the proposed FE model are verified by comparison with various selected experimental measurements available in the literature. The numerical results of the plated beams (beams strengthened with FRP plates) agreed very well with the experimental results. The use of FRP increased the ultimate load capacity up to 100 % compared with the non-strengthened beams as occurred in series (S). The major objective of the current model is to help engineers’ model FRP-strengthened RC continuous beams in a simple manner.
Cost Analysis of RCC, Steel and Composite Multi-Storied Car Parking Subjected to High Wind Exposure in Bangladesh Kuddus, Mir Abdul; Dey, Partha Pritom
Civil Engineering Journal Vol 3, No 2 (2017): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (752.594 KB)

Abstract

Steel-concrete composite constructions in Bangladesh are nowadays very popular owing to their advantages over conventional concrete and steel constructions. Concrete structures are massive and allot more seismic weight and less deflection whereas steel structures instruct more deflections and ductility to the structure, which is beneficial in resisting earthquake and wind forces. Composite construction combines the better properties of both steel and concrete along with lesser cost, speedy construction, fire protection etc. The objective of this study was to analysis and design ground floor plus 19 storied R.C.C, Steel and Composite (steel-concrete) multi-storied parking structure’s frame of same plan using ETABS 2013 software and compare their structural parameters with estimated cost for required material. All frames are designed for same gravity and dynamic loadings. The RCC deck-slab is used in steel and composite frame. Beam and column sections are made of RCC, steel or steel-concrete composite sections. The composite construction option provided about 25 % and 18% less cost when compared to RCC and steel structure, respectively. Comparative study concludes that the composite frames are best suited among all the three types of constructions in terms of material cost and benefit added with better structural behaviour.
An ANN Based Sensitivity Analysis of Factors Affecting Stability of Gravity Hunched Back Quay Walls Karimnader-Shalkouhi, Samir; Karimpour Fard, Mehran; Machado, Sandro
Civil Engineering Journal Vol 3, No 5 (2017): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3929.043 KB)

Abstract

This paper presents Artificial Neural Network (ANN) prediction models that relate the safety factors of a quay wall against sliding, overturning and bearing capacity failure to the soil geotechnical properties, the geometry of the gravity hunched back quay walls and the loading conditions. In this study, a database of around 80000 hypothetical data sets was created using a conceptual model of a gravity hunched back quay wall with different geometries, loading conditions and geotechnical properties of the soil backfill and the wall foundation. To create this database a MATLAB aided program was written based on one of the most common manuals, OCDI (2002). Comparison between the results of the developed models and cases in the data bank indicates that the predictions are within a confidence interval of 95%. To evaluate the effect of each factor on these values of factor of safety, sensitivity analysis were performed and discussed. According to the performed sensitivity analysis, shear strength parameters of the soil behind and beneath the walls are the most important variables in predicting the safety factors.

Page 1 of 125 | Total Record : 1246


Filter by Year

2015 2023


Filter By Issues
All Issue Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue