cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 3 Documents
Search results for , issue " Vol 5, No 4 (2019): April" : 3 Documents clear
Performance of Concrete MRF at Near-Field Earthquakes Compared to Far-Field Earthquakes Raji, Farzaneh; Naeiji, Amir
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (733.051 KB) | DOI: 10.28991/cej-2019-03091285

Abstract

The characteristic of near-field earthquake records has been investigated in the previous studies. However, the effects of the near-field earthquakes on the response of the building structures need to be further investigated. Engineering demand parameters like inter-story drift ratio and floor acceleration can provide a good means for comparing the response of structures to the near-field and the far-field earthquakes. The main objective of this paper was to apply these two parameters to compare the behavior of the concrete Moment Resistant Frame (MRF) subjected to near-field and far-field ground motions. In this study, non-linear numerical simulations were performed on concrete MRF office buildings subjected to two sets of 14 near-field records and 14 far-field records. The analytical models simulated 4-story, 8-story, and 16 story buildings. The obtained results indicated that the near-field effects can increase the inter-story drift ratio and floor acceleration at lower stories of low and mid-rise building subjected to high ground motion intensities.
Characteristics of Traffic Accidents in Baghdad Albayati, Amjad H.; Lateef, Ishraq Mahdi
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (845.592 KB) | DOI: 10.28991/cej-2019-03091301

Abstract

Road traffic accidents (RTAs) are events that suddenly, inadvertently and unexpectedly occur under unforeseen circumstances that involve at least one moving vehicle and result in one or more road users being killed or injured. Unfortunately, Iraqi governorates suffer from higher rates of traffic accident casualties compared with the rates of casualties from terrorist attacks; this situation reveals a serious and growing problem. Road traffic accidents are not easy to eradicate. However, their prevalence can be reduced to the barest minimum via periodic assessments of traffic accident characteristics and the most important aspects for road authorities to consider when designing and evaluating the performance of a road to improve traffic and road users’ safety.Therefore, the primary objective of this paper is to evaluate traffic accidents in Baghdad using a retrospective analysis of accidents that occurred from 2006–2016 taking into consideration the following parameters: the cause of the accident, the genders of the victims, the number and type of vehicles involved in the accident, the time of the accident, the severity of the accident, the type of accident and the age group of the driver(s). The data were been obtained from the Central Statistical Organization in the Ministry of Planning. The results reveal that 12,019 RTAs occurred in the city of Baghdad; on average, 1,092 RTAs occurred each year. Twenty-two percent of the RTAs resulted in death, 67% resulted in injury and 6% resulted in both deaths and injuries. Only 4% of the RTAs resulted in property damage without victims. To this end, Baghdad has the highest prevalence of RTAs of all Iraqi governorates. These results provide scientific evidence to mobilize road authorities to effectively and urgently develop adequate traffic strategies and policies to reduce the epidemic of RTAs in Baghdad as well as other Iraqi governorates.
GGBS And Fly Ash Effects on Compressive Strength by Partial Replacement of Cement Concrete Phul, Azmat Ali; Memon, Muhammad Jaffar; Shah, Syed Naveed Raza; Sandhu, Abdul Razzaque
Civil Engineering Journal Vol 5, No 4 (2019): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (646.537 KB) | DOI: 10.28991/cej-2019-03091299

Abstract

This paper investigates the compressive strength properties of concrete with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash in concrete by partial replacement of cement. The incremental demand of cement in the construction field is a concern for environmental degradation, in this regard; replacement of cement is carried out with waste materials by using GGBS and Fly Ash. On optimum level of GGBS and Fly Ash was assessed with varied percentage from 0 to 30% for different curing days. Replaced concrete were tested with the slump, compaction factor, Vee-bee and compressive strength. Cement to water ratio was maintained at 0.47 for all mixes. The compressive strength tests were conducted for 3, 7, 14 and 28 days of curing on a M25 grade concrete. The results obtained from the slump, compaction factor, Vee-bee and compressive strength of concrete containing GGBS and Fly Ash was increased as the curing time increases. The workability of replaced concrete improved when slump value achieved 30% as compared to controlled one SF0 and the compressive strength obtained 26.30% improvement at SF9 as compared to SF0. The outcomes indicated that the addition of GGBS and Fly Ash enhances the workability and compressive strength which eventually improved the mechanical properties of concrete.

Page 1 of 1 | Total Record : 3


Filter by Year

2019 2019


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue