cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 17 Documents
Search results for , issue "Vol 3, No 10 (2017): October" : 17 Documents clear
Effect of Main Factors on Fracture Mode of Mortar, A Graphical Study Sahar Mahdinia; Hamid Eskandari-Naddaf; Rasoul Shadnia
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1272.933 KB) | DOI: 10.28991/cej-030923

Abstract

One of the most effective ways to identify the concrete properties is to understand further about the cement mortar, which is a mixture of cement paste and fine aggregate. In order to identify the behavior of cement mortar, all required materials including cement, fine aggregate, water as well as the different ratios of each material should beinvestigated. The main objective of this research is to study the effectiveness of main parameters of mortar on the fracture mode and related factors. Specifically 26 mixing designs of flexural mortar with three cement strength classes (32.5, 42.5 and 52.5 MPa), three water to cement (W/C) ratios (0.25, 0.3 and 0.35) and three sand to cement (S/C) ratios (2.5, 2.75 and 3) were first prepared. The prepared samples were then tested using a stress-strain apparatus. Some pictures were finally taken from the fracture surfaces to investigate the mode and angle of fractures. The results indicated that any change in the main parameters of mortar changes the fracture mode and the fracture angle.
Oil Reservoir Permeability Estimation from Well Logging Data Using Statistical Methods (A Case Study: South Pars Oil Reservoir) Akbar Esmailzadeh; Sina Ahmadi; Reza Rooki; Reza Mikaeil
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (775.277 KB) | DOI: 10.28991/cej-030918

Abstract

Permeability is a key parameter that affects fluids flow in reservoir and its accurate determination is a significant task. Permeability usually is measured using practical approaches such as either core analysis or well test which both are time and cost consuming. For these reasons applying well logging data in order to obtaining petrophysical properties of oil reservoir such as permeability and porosity is common. Most of petrophysical parameters generally have relationship with one of well logged data. But reservoir permeability does not show clear and meaningful correlation with any of logged data. Sonic log, density log, neutron log, resistivity log, photo electric factor log and gamma log, are the logs which effect on permeability. It is clear that all of above logs do not effect on permeability with same degree. Hence determination of which log or logs have more effect on permeability is essential task. In order to obtaining mathematical relationship between permeability and affected log data, fitting statistical nonlinear models on measured geophysical data logs as input data and measured vertical and horizontal permeability data as output, was studied. Results indicate that sonic log, density log, neutron log and resistivity log have most effect on permeability, so nonlinear relationships between these logs and permeability was done.
Dynamic Response of Bridge-Ship Collision Considering Pile-Soil Interaction Hussein Yousif Aziz; HE Yun Yong; Baydaa Hussain Mauls
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (794.186 KB) | DOI: 10.28991/cej-030929

Abstract

According to most countries’ norms, and to find the effect of the bridge collision the equivalent static method was designed for bridge-ship collision, ignoring the dynamic effects of shocks. It is sharply different from actual situation. So based on the theory of Winkler foundation, shearing strain theory of Timoshenko and potential energy variation functional principle of Hamilton, the simulation models of bridge piers was built considering the pile–soil interaction. Lateral transient vibration equation of bridge piers was concluded. Based on the theory of integral transform, the differential equation of the collision system and the boundary conditions were transformed with Laplace transformation; the analytical solution of the stress wave in frequency domain was concluded. And then the inversion of solution in frequency domain was carried out using Matlab based on the Crump inverse transformation. Finally the dynamic response law of displacement, normal stress and the shear stress of bridge piers were obtained.
A Proposal Model for Estimation of Project Success in Terms of Radial Based Neural Networks: A Case Study in Iran Mahdi Asgari; Ali Kheyroddin; Hosein Naderpour
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1045.539 KB) | DOI: 10.28991/cej-030924

Abstract

For improving the conditions of project intended purpose and reaching high score in the project success, project Stakeholders (including employer, contractor, consultant and its users) try to comply with the implementation of project Critical Success Factors(CSFs) at the beginning of each project. This implementation is in two terms: economic and executive. Artificial neural networks are one of the new methods which have been developed to estimate and predict parameters by using inherent relationship among data. In this research, it tried to propose a model to determine the project success score by using radial basis neural networks. For reaching this purpose, firstly, the key indicators of project success (employer, contractor and consultant) among the main elements involved in the industry of macro-civil construction projects in Iran reviewed. Secondly, ten CSFs key project success indicators were recognized in five categories: (i) financial, (ii) interaction processes, (iii) manpower, (iv) contract settings and (v) characteristic nature of the project (based on conditions of the present research in Iran). Then, some projects were selected by random sampling of projects operated during the last 5 years in the country's Ministry of Energy. Among those projects, project information was collected by managers of large projects. After training the designed neural network, the project success model was provided based on an assessment of project objectives including factors of Scope, Time, Cost, and Quality of the projects. For facilitating other researches’ use, the applied equation of the model was presented as well. Outputs, calculated by the proposed model, were in good agreement with the actual number of projects assessed in Iran. The results of this study may be used as a tool in implementing projects for the rapid assessment of achieving project goals’ facilities.
Condition Assessment of Existing Concrete Building Using Non-Destructive Testing Methods for Effective Repair and Restoration-A Case Study Venkatesh, Preethi; Alapati, Mallika
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1396.135 KB) | DOI: 10.28991/cej-030919

Abstract

Buildings constructed during early 70’s & late 80’s of the last century in India are found to be in distressed conditions due to inadequate specifications and poor construction practices. The continuous monitoring of concrete structures using suitable NDT (Non Destructive Testing) methods and use of possible restoration methods help in a considerable reduction of the rate of deterioration of concrete structures thereby increasing the life span of  structures. NDT methods have greater advantage in evaluating the uniformity, homogeneity, approximate compressive strength, durability, the extent of corrosion of rebars in concrete etc. of damaged structures. The objective of the present study is to enhance the life of 50 year old existing hospital building (Partly RC and Brick masonry) in Kurnool, Andhra Pradesh. Condition assessments are carried out through a visual, field and laboratory evaluation of samples collected from the structure and results are presented in this paper. The paper also highlights the assessment of strength and durability of concrete to evaluate the extent of distress and damage in the building. Besides visual inspection, the Non Destructive Evaluation covering UPV & Rebound Hammer values and Half Cell Potential with respect to the status of corrosion of reinforcing bars and chemical tests on selected un-distressed RC columns, beams, and slabs are also presented and discussed. The repair and strengthening techniques using the latest materials and possible restoration works such as column jacketing, shotcreting, anticorrosive coatings, etc. have been suggested to enhance the life of the structure.
Experimental Evaluation of Eco-friendly Light Weight Concrete with Optimal Level of Rice Husk Ash Replacement Zareei, Seyed Alireza; Ameri, Farshad; Bahrami, Nasrollah; Dorostkar, Farzan
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1082.069 KB) | DOI: 10.28991/cej-030930

Abstract

Concrete is a versatile and cost-effective building material whose properties are influenced by age, curing condition, and installation. A number of studies deduced that there should be an association of benefits encouraged the use of partial replacements of cement seems to improve strength and durability properties of concrete. This paper presents a framework for feasibility assessment and determination of optimum percentage of rice husk ash (RHA) replacement. Five mix plans with RHA replacing ratio of 0-20% and constant micro- silica value by 10% were prepared. Tests results indicated that compressive strength increased by 20% with an increase in RHA up to 15%. The similar trend was observed in mix designs made of cement replaced by RHA up to 20% in water absorption coefficient measurement. Higher chloride ion penetration was observed in mix designs containing 25% RHA compared to that of conventional concrete. Mixes developed a slightly higher impact resistance than the control mix.
Experimental Investigation of Damage Detection in Beam Using Dynamic Excitation System Mehdi Kouhdaragh
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (946.781 KB) | DOI: 10.28991/cej-030925

Abstract

Most structural failures are due to break in consisting materials. These breaks begin with a crack, the extension of which is a serious threat to the behaviour of structure. Thus the methods of distinguishing and showing cracks are the most important subjects being investigated. In this article, a new smart portable mechanical system to detect damage in beam structures via using fuzzy-genetic algorithm is introduced. Acceleration-time history of the three points of beam is obtained. The signals are then decomposed into smaller components using new EMD (Empirical Mode Decomposition) method with every IMF containing a specific range of frequency. The dominant frequencies of the structure are obtained from these IMFs using Short-term Fourier transform. Subsequently, a new method of damage detection in simply supported beams is introduced based on fuzzy-genetic algorithm. The new method is capable of identifying the location and intensity of the damage. This algorithm is developed to detect the location and intensity of the damage along the beam, which can detect the damage location and intensity based on the pattern of beam frequency variations between undamaged and damaged states.
A Study of the Conditions of Energy Dissipation in Stepped Spillways with Λ-shaped step Using FLOW-3D Abbas Mansoori; Shadi Erfanian; Farhad Khamchin Moghadam
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1286.116 KB) | DOI: 10.28991/cej-030920

Abstract

In the present study, energy dissipation was investigated in a specific type of stepped spillways. The purpose was to achieve the highest level of energy dissipation in downstream of the spillway. It was performed by providing a specific type of geometry for step as a great roughness. Here, steps were recognized as great roughness against flow. Their shape and number were designed in such a way that the maximum flow energy can be minimized in this stage, i.e. over steps before reaching to downstream. Accordingly, it can be stated that the highest energy dissipation rate will be obtained in the structure at downstream. Moreover, thereby, heavy costs imposed by designing and constructing stilling basin on project can be minimized. In this study, FLOW-3D was employed to analyse and obtain energy dissipation rate. The best geometry of the steps, through which the maximum energy dissipation can be achieved, was determined by reviewing related literature and inventing the proposed model in FLOW-3D. To evaluate the proposed method, analyses were performed using trial and error in mesh networks sizes as well as the mentioned methods and the results were compared to other studies. In other words, the most optimal state was obtained with Λ-shaped step at angel of 25 degree with respect to energy dissipation rate compare to smooth step.
Effect of SBS Polymer and Anti-stripping Agents on the Moisture Susceptibility of Hot and Warm Mix Asphalt Mixtures Hamed Omrani; Ali Reza Ghanizadeh; Amin Tanakizadeh
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (840.033 KB) | DOI: 10.28991/cej-030931

Abstract

The primary objective of this study is exploring the moisture susceptibility of unmodified and SBS-modified hot and warm mix asphalt mixtures. To this end, two different WMA additives including Aspha-min and Sasobit were employed to fabricate WMA specimens. The moisture susceptibility of warm polymer modified asphalt (WPMA) mixes was evaluated using modified Lottman test at 25°C according to AASHTO standard (T 283). In addition, the effect of different percentages of hydrated lime (from 0% to 2%) and Zycosoil (from 0% to 0.1%) as anti-stripping additives on the moisture susceptibility of the mixtures was explored. Based on the ITS test results, WPMA prepared with Sasobit additive and polymer modified asphalt (PMA) mixes satisfied the desirable tensile strength ratio (TSR) (above 80%) but Aspha-min WPMA mixes had TSR lower than 80%.
Construction of N-M Interaction Diagram for Reinforced Concrete Columns Strengthened with Steel Jackets Using Plastic Stress Distribution Method Al-Sherrawi, Mohannad Husain; Salman, Hamza M.
Civil Engineering Journal Vol 3, No 10 (2017): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1059.852 KB) | DOI: 10.28991/cej-030926

Abstract

No attempts have been made in developing the N-M interaction diagram for reinforced concrete columns strengthened with steel jackets using the plastic stress distribution method. Therefore, this paper presents an analytical model to construct the N-M interaction diagram for reinforced concrete columns strengthened with steel jackets using the plastic stress distribution method after assuming the behavior of strengthened column to be like composite column and including the effects of confinement on concrete compressive strength. The proposed model was compared with experimental results. The comparisons showed that the model is conservative and it reveals the ultimate strength of the strengthened column. A parametric study has been also carried out to investigate the influence of various parameters on the N-M interaction diagram of the strengthened column. These parameters were: dimensions of steel angle, yield stress of the steel angles, concrete compressive strength and the size of the reinforcement bars used in RC columns. The results made clear the effects of these parameters on the N-M interaction diagram, and encouraged the use of the model in preliminary strengthening studies.

Page 1 of 2 | Total Record : 17


Filter by Year

2017 2017


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue