cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 3, No 11 (2017): November" : 15 Documents clear
Optimizing Compressive Strength of Micro- and Nano-silica Concrete by Statistical Method Mahsa Zarehparvar-Shoja; Hamid Eskandari-Naddaf
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (892.43 KB) | DOI: 10.28991/cej-030939

Abstract

In recent years, the use of nano-particles to improve the properties of concrete has created a new perspective on concrete technology. Studies in this field indicate improved concrete properties and higher strength by adding nano and micro silica particles to concrete mixes. In this regard, 12 mixing designs with different amounts of these admixtures with three types of cement strength classes (525,425,325) and 36 cubic samples (10 × 10 × 10) were designed and tested to measure compressive strength, of which we have only used 6 mixing plans in this research. The purpose of this research is to present a new method for concrete mix design by optimizing principles. Therefore, in this paper, the Taguchi statistical methods and the factorial design of the optimal mixing plan for this type of concrete are used to reduce the number of experiments to predict the optimal composition of the materials. The results obtained from the MINITAB software show that the effect of combined micro-silica and nano-silica on the compressive strength is in one direction and the effect of these two factors is more than cement strength grade of the cement and also the optimal value for micro-silica and nano-silica are estimated to have an optimum amount of micro-silica and nano-silica of 95 and 38 grams, respectively.
An Approach to the Green Area Parameter in Urban Transformation Polat, Halil Ibrahim
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1073.726 KB) | DOI: 10.28991/cej-030934

Abstract

In this study, the green area value is obtained from the feasibility reports which are made in 4, 6-hectare region that is declared as a risky area within the framework of the Law of Transformation of Areas Under Disaster Risk (No. 6306) and Implementation Regulation and the green area per capita (m2/person) is determined. In urban planning in which all of the land-use, social, technical infrastructure parameters need to be considered at the optimum level as a whole, according to this article; even if only the green area data is taken into consideration, the importance of making a transformation decision for the region is supported by the analysis. In this context; an analysis and calculation model has been proposed with the parameters defined in suggestion form which is bordered with the boundary value conditions in the light of international and national data. In the current situation, development plans’ situation and the draft case, it is tried to compare the amounts of the green areas and to give an approach for the green area ratio per capita.
Comparison Study of CBFs and EBFs Bracing in Steel Structures with Nonlinear Time History Analysis Yaseer Khademi; Mehdi Rezaie
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (373.527 KB) | DOI: 10.28991/cej-030945

Abstract

Steel concentrically braced frames (CBFs) and Steel eccentricity braced frames (EBFs) are frequently used as efficient lateral load resisting systems to resist earthquake and wind loads. This paper focuses on high seismic applications where the brace members in CBFs and EBFs dissipate energy through repeated cycles of buckling and yielding. The present study evaluates in detail the design philosophies and provisions used in the United States for these systems. The results of a total of 176 analysis of nonlinear history of seismic behavior of CBFs and EBFs braces have been presented. Notable differences are observed between the performances of the CBFs and EBFs designed using American provisions. The similarities and differences are thoroughly discussed.
Mathematical Modeling and Sensitivity Analysis on Cadmium Transport in Kaolinite under Direct Current Electric Field Milad Rezaee; Mostafa Nasrollahi Gisel; Saman Saffari
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (707.984 KB) | DOI: 10.28991/cej-030940

Abstract

Soil pollution is a challenging concern for environmentalists. Different remediation methods have been proposed to remediate polluted soils. Most of the existing methods cannot purify low permeable soils. Electrokinetic remediation (EKR) is an effective method which can remediate fine-grained soils. Understanding the physicochemical phenomena of the EKR is necessary to achieve efficient experimental framework. Therefore, the present study aims to introduce a theoretical and mathematical model for the EKR process. In the present model, different transport phenomena including ion migration, electroosmotic flow, and diffusion were considered. In addition, Chemical reactions such as adsorption/desorption, precipitation/dissolution, water autoionization reaction, and electrolysis reaction were considered. For modeling purpose, a set of partial differential and algebraic equations were used to model the remediation process. The implicit finite difference numerical model showed a good capability of simulating the EKR process. The sensitivity analysis on the retardation and tortuosity factors represented that the retardation factor had a considerable effect on the pH and cadmium concentration profiles. Although tortuosity factor did not have a significant impact on the pH profile, it had a non-negligible effect on the cadmium concentration profile.
An Alternative Vehicle Counting Tool Using the Kalman Filter within MATLAB Espejel-García, Daphne; Ortíz-Anchondo, Luis Ricardo; Alvarez-Herrera, Cornelio; Hernandez-López, Alfonso; Espejel-García, Vanessa Verónica; Villalobos-Aragón, Alejandro
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.813 KB) | DOI: 10.28991/cej-030935

Abstract

This study proposes an alternative and economical tool to estimate traffic densities, via video-image processing adapting the Kalman filter included in the Matlab code. Traffic information involves acquiring data for long periods of time at stationary points. Vehicle counting is vital in modern transport studies, and can be achieved by using different techniques, such as manual counts, use of pneumatic tubes, magnetic sensors, etc. In this research however, automatic vehicle detection was achieved using image processing, because it is an economical and sometimes even faster option. Commercial automatic vehicle detection and tracking programs/applications already exist, but their use is typically prohibitive due to their high cost. Large cities can obtain traffic recordings from surveillance cameras and process the information, but it is difficult for smaller towns without such infrastructure or even assigned budget. The proposed tool was developed taking into consideration these difficult situations, and it only requires users to have access to a fixed video camera placed at an elevated point (e.g. a pedestrian bridge or a light pole) and a computer with a powerful processor; the images are processed automatically through the Kalman filter code within Matlab. The Kalman filter predicts random signals, separates signals from random noise or detects signals with the presence of noise, minimizing the estimated error. It needs nevertheless some adjustments to focus it for vehicle counting. The proposed algorithm can thus be adapted to fit the users’ necessities and even the camera’s position. The use of this algorithm allows to obtain traffic data and may help small cities´ decision makers dealing with present and future urban planning and the design or installment of transportation systems.
Estimation of Origin – Destination Matrix from Traffic Counts Based On Fuzzy Logic Nabizade Gangeraj, Ebrahim; Behzadi, Gholam Ali; Behzad, Reza
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (749.345 KB) | DOI: 10.28991/cej-030946

Abstract

Determining trip demand matrix is among the basic data in transportation planning. This matrix is derived by surveys, interviews with citizens or questionnaires that required time, money and manpower. Thus, in recent years, demand estimation methods based on network information is taken into consideration. In these methods with the information including: volume, travel time, capacity of the links and initial demand matrix it is possible to estimate the demand matrix. In this paper, we removed the additional parameters in previous studies and used a simple solution to estimate the matrix. This paper proposes a Fuzzy-PFE estimation method that allows to improve the estimation performances of PFE estimator. The objective function presented based on the reduction of travel time and travel time of routs in networks is uncertain. The method is developed by fuzzy sets theory and fuzzy programming that seems to be convenient theoretical framework to represent uncertainty in the available data. The new model is the removal of iterative process of origin - destination matrix estimation using travel time and increase convergence of the model for the large-scale and congested networks by applying little changes in the basic model. In this paper we used TRANSCAD Software to determine the shortest path in the network and optimization of objective function is performed by CPLEX.
Three-Dimension Numerical Simulation of Scour Temporal Changes due to Flow in the Downstream of Combined Weirs and Gate Model Yaser Sadeghi Googheri; Mojtaba Saneie; Sirous Ershadi
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1453.463 KB) | DOI: 10.28991/cej-030941

Abstract

Most of weirs create a region with relatively static water in upstream, which can be the place of sediments and wastes deposition in water. Sediments accumulation in upstream changes flow conditions.  In this case, combined weir and gate can be propounded as a useful solution. In the present paper, Flow3D was used to numerically simulate temporal changes of scour in combined free flow over weirs and below gates. Numerical modeling was run after fully preparing and the obtained data was analyzed under three-dimensional conditions. Comparing experimental and numerical results with data fitness revealed that determination coefficient (R2) of the numerical model results to the experimental model results is 0.94. Also, it was found that the relative error of the numerical model results relative to the experimental results equals 7.36%. Further, it was found that at the start of computations in the numerical model, compared to the end of running the model, the turbulent energy dissipation was decreased to 38% and decreasing the turbulent energy dissipation led to the creation of scour hole balance in the numerical model.
Variation of the Hydraulic Conductivity of Clayey Soils in Exposure to Organic Permeants Hanane Mortezaei; Mehran Karimpour Fard
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (810.001 KB) | DOI: 10.28991/cej-030936

Abstract

Clayey soils are the most common material used in waterproofing and play an essential role in waste and contamination control. Permeability is a key parameter in such problems and its determination is needed in ensuring the satisfactory performance of the soil. Research has shown that a permeant fluid with a low dielectric constant can shrink the double layer around the clay particles which will, in turn, increase the permeability of the soil. In this paper, the permeability of two types of clay with different plasticity, exposed to the flow of water and methanol as polar and miscible solvents and gasoline and car oil as non-polar and immiscible solvents is investigated. In addition, the effect of soil properties such as plasticity and compaction water content on permeability of the samples is examined. To this end, soil samples are prepared and compacted at various water contents. Then, permeability tests are conducted according to the modified constant head method and the effects of parameters such as the fluid dielectric constant, water content of the samples and soil plasticity are examined. The results demonstrate that the lower dielectric constant of the organic fluid decreases the thickness of the double layer, providing more space for the flow of the permeant and as a result, the permeability of the clay increases. The reduction of the permeant dielectric constant from 80.4 to 2.28 led to a remarkable increase in soil permeability.
Investigating Effect of Different Parameters of the Submerged Vanes on the Lateral Intake Discharge Located in the 180 Degree Bend Using the Numerical Model Ali Sarhadi; Ehsan Jabbari
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (730.616 KB) | DOI: 10.28991/cej-030947

Abstract

Intakes are widely used for flow diversion and its control in the open channels or rivers. During passing flow, part of the suspended sediment along with the flow enters the lateral channel and deposits in the lateral intake channel entrance, causing a change in the direction of the flow line towards the shore in front of the reservoir, which reduces the intake efficiency. Submerged vanes are small hydraulic structures that, by creating a secondary flow in their downstream, cause changes in the flow pattern and guide line to the drainage span, and the most important parameters affecting sediment input to the waterfall is the ratio of flow rate. Investigating a laboratory model has high costs and times, which in some cases cannot be justified, therefore, suitable numerical models can be proposed for such options. In this study, using Flow3D, three-dimensional numerical modeling of the flow was calibrated and verified using existing data and numerical modeling accuracy, the relative error of the numerical model was determined. In this study, all effective parameters including submerged vanes type, submerged vanes number, submerged vanes size and Froude number changes in the main channel and type of submerged vanes layout have been investigated. The results of the numerical model show that the angle of inclination of 60 degrees in the entrance intake and the chassis layout in the Froude numbers 0.21-0.33 will result in the most lateral intake discharge.
Deformation Behavior of Reinforced Concrete Two-Way Slabs Strengthened with Different Widths and Configurations of GFRP Izadi, Hossein; Pesaran Behbahani, Hamid
Civil Engineering Journal Vol 3, No 11 (2017): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (820.58 KB) | DOI: 10.28991/cej-030942

Abstract

In this paper, we conducted a numerical analysis of the deformation behavior of Steel-reinforced concrete (RC) two-way slabs strengthened by glass fiber reinforced polymer (GFRP) with different widths and configurations. A total number of 36 RC slabs of  cm were used in this numerical study. Also, a column of  was considered in the center of the slab for applying static loading. The bonded GFRP strips had 5, 7.5 and 10 cm width (W) and configured in three models called PM1, PM2, and DM. In PM1 (strip length = 2.4 m) and PM2 (strip length =1.7 m) configurations, the strips were bonded in two directions parallel to the sides of the slab, while in DM configuration (strip length =1.7 m), strips were rotated with 45 degree angle around the central axis that is perpendicular to the surface of the slab. According to the comparison results, we found out that the 5-cm wide strips with PM1 configuration having a parallel space of 0.5 times the strip width ( ) greatly reduced the deformation of RC two-way slab compared to other strip widths and configurations, while  strips under all configurations, highly increased the deformation when space between strips varied from  to .

Page 1 of 2 | Total Record : 15


Filter by Year

2017 2017


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue