cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 3, No 5 (2017): May" : 6 Documents clear
Structural Vulnerability Assessment of Historical Buildings in Turkey Kasim Korkmaz; Asuman Carhoglu
Civil Engineering Journal Vol 3, No 5 (2017): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1056.468 KB) | DOI: 10.28991/cej-2017-00000094

Abstract

Structural Vulnerability assessment of historical buildings is very important to carry them to the future. Turkey is a rich country in terms of historic masterships mostly from Ottoman Empire, such as mosques, bathhouses, churches and aqueducts. Especially mosques are the common historical structures in turkey. Therefore, in the present study, structural vulnerability assessment of historical mosques in Turkey was carried out. One of the existing ones is considered as a sample building and structural vulnerability assessment was carried out on this building. The sample building was selected as Konak Mosque located in Izmir, Turkey. The mosque was structurally investigated through advanced approaches. The mosque, constructed in 1755 by Ottoman at very central location close by the clock tower, is little one decorated with blue tiles. The mosque is also nearby a historical bazaar where the main historical business stream line is located. Konak Mosque is one of these new styles in that age. It can be named as a signature historical building representing Islamic minimalist oriented architecture with its unique octagonal plan. In the present study, the building was modelled by using the Finite Element Modelling (FEM) software, SAP2000. Time history analyses were carried out using 10 different ground motion data. Displacements, base shear and stress values were interpreted and the results were displayed graphically and discussed. For probabilistic seismic risk assessment, fragility analyses were also carried out and the fragility curve and surface were sketched for the mosque. Saddle point was determined on the fragility surface.
Forecasting by Stochastic Models to Inflow of Karkheh Dam at Iran Karim Hamidi Machekposhti; Hossein Sedghi; Abdolrasoul Telvari; Hossein Babazadeh
Civil Engineering Journal Vol 3, No 5 (2017): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (718.733 KB) | DOI: 10.28991/cej-2017-00000095

Abstract

Forecasting the inflow of rivers to reservoirs of dams has high importance and complexity. Design and optimal operation of the dams is essential. Mathematical and analytical methods use for understanding estimating and prediction of inflow to reservoirs in the future. Various methods including stochastic models can be used as a management tool to predict future values of these systems. In this study stochastic models (ARIMA) are applied to records of mean annual flow Karkheh river entrance to Karkheh dam in the west of Iran. For this purpose we collected annual flow during the period from 1958/1959 to 2005/2006 in Jelogir Majin hydrometric station. The available data consists of 48 years of mean Annual discharge. Three types of ARIMA (p, d, q) models (0, 1, 1), (1, 1, 1) and (4, 1, 1) suggested, and the selected model is the one which give minimum Akaike Information Criterion (AIC). The Maximum Likelihood (ML), Conditional Least Square (CLS) and Unconditional Least Square (ULS) methods are used to estimate the model parameters. It is found that the model which corresponds to the minimum AIC is the (4, 1, 1) model in CLS estimation method. Port Manteau Lack of fit test and Residual Autocorrelation Function (RACF) test are applied as diagnostic checking. Forecasting of annual inflow for the period from 2006 to 2015 are compared with observed inflow for the same period and since agreement is very good adequacy of the selected model is confirmed.
Numerical Modeling of Soil-Pile-Interaction with Near and Far Field Earthquake's Effects Mohammad Shahmohammadi Mehrjerdi; Ahmad Ali Fallah; S.T. Tabatabaei Aghda
Civil Engineering Journal Vol 3, No 5 (2017): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1662.892 KB) | DOI: 10.28991/cej-2017-00000096

Abstract

This paper studies Near and Far Field effects of the response of a column-pile to earthquakes considering Dynamic-Soil-Structure-Interaction (DSSI) effects in soft clay (Vs<180 m/s ) and stiff clay (180<Vs<375 m/s). Opensees software that can simulate the dynamic time history analysis is used. Both kinematic and inertial interactions are considered and Finite Element Method (FEM) is used to solve DSSI. The direct method applies to 3D modeling of the layered soil and column-pile. A Pressure Independ Multi Yield Surface Plasticity Model is used to simulate different kinds of clay behavior.  Time history seismic analyses provide for the mass and stiffness matrices to evaluate dynamic structural response with and without directivity effects for Near and Far Field earthquakes. Results show that the Multi-Yield-Surface-Kinematic-Plasticity-Model can be used instead of bilinear springs between piles and clay soil, for both Near Field and Far Field earthquakes. In addition, comparing Near and Far Field analyses, acceleration response spectrum at the top of the structure in the Far Field increases with the softness of the soil more than that in the Near field.
Alkali-Activation of Non-Wood Biomass Ash: Effects of Ash Characteristics on Concrete Performance Faris Matalkah; A.G.N.D. Darsanasiri; Saqib Abideen; Anagi Balachadra; Parviz Soroushian
Civil Engineering Journal Vol 3, No 5 (2017): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (991.635 KB) | DOI: 10.28991/cej-2017-00000097

Abstract

Combustion of biomass is increasingly practiced for power generation. Unlike coal ash, the combustion ashes of biomass do not offer significant value in Portland cement concrete production. An experimental study was conducted in order to assess the value of the combustion ashes of different non-wood biomass types towards production of alkali activated binders for concrete production. The results indicated that concrete materials with a desired balance of fresh mix workability, set time and compressive strength can be produced used alkali activated non-wood biomass ash binders. Correlations were drawn between the concrete engineering properties and different non-wood biomass ash characteristics. It was found that statistically significant relationships exist between the concrete properties and the non-wood biomass ash degree of crystallinity and solubility. These two ash characteristics were also found to be correlated. It was concluded that the suitability of non-wood biomass ash for use in production of alkali activated concrete can be assessed based on its degree of crystallinity.
An ANN Based Sensitivity Analysis of Factors Affecting Stability of Gravity Hunched Back Quay Walls Karimnader-Shalkouhi, Samir; Karimpour Fard, Mehran; Machado, Sandro
Civil Engineering Journal Vol 3, No 5 (2017): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3929.043 KB)

Abstract

This paper presents Artificial Neural Network (ANN) prediction models that relate the safety factors of a quay wall against sliding, overturning and bearing capacity failure to the soil geotechnical properties, the geometry of the gravity hunched back quay walls and the loading conditions. In this study, a database of around 80000 hypothetical data sets was created using a conceptual model of a gravity hunched back quay wall with different geometries, loading conditions and geotechnical properties of the soil backfill and the wall foundation. To create this database a MATLAB aided program was written based on one of the most common manuals, OCDI (2002). Comparison between the results of the developed models and cases in the data bank indicates that the predictions are within a confidence interval of 95%. To evaluate the effect of each factor on these values of factor of safety, sensitivity analysis were performed and discussed. According to the performed sensitivity analysis, shear strength parameters of the soil behind and beneath the walls are the most important variables in predicting the safety factors.
Stability Analysis of Gabion wall with Tieback in Seismic Regions Asadpour, Hamid; Akhlaghi, Tohid
Civil Engineering Journal Vol 3, No 5 (2017): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1620.006 KB)

Abstract

One of the most important issues in the construction of highways, mountain and urban roads is known as slope stabilization. If the necessary actions for protection are not considered, it could lead to problems and events such as landslides, settlements and even destruction of roads. There are many methods for stabilizing slopes such as Gabion walls and Tiebacks. This study can be used as the beginning of a new synthetic method where the Gabion wall is combined with Tiebacks. Gabion walls and tiebacks can be known as the most flexible methods of slope stabilization methods, because of this reason, if they can be combined with each other, it should show very good results in front of dynamic and even static forces. This combination is the novel point of this research. In this study at first, the gabion wall will be analysed in different loading conditions, and then to deal with earthquake dynamic forces the tiebacks will be used to increase the gabion walls stability.The software that is used in this study is GEO5 software, nowadays this software can be introduced as one of the best slope stability analysis softwares. The results of this study showed that the designed gabion wall could be stable in dense silty gravel soil (GM) in 8.5-meter slope, and with magnitude of 0.25 horizontal coefficient of Manjil earthquake, but in the same geometry and material condition and impact of 0.4 magnitude horizontal coefficient of Bam earthquake it couldnt be stable alone. In this condition four rows of 18 meter tiebacks could stable the gabion wall very well. In this model, under loading condition 3 (with horizontal and vertical pseudo-static coefficient of Bam earthquake) that had the most vertical pseudo-static coefficient, the 23-meter tieback anchors with 12-degree inclination respect to horizontal could stable the considered gabion wall. This result could show that, the combination of gabion walls with tieback anchors gives a satisfactory result and it is an efficient and helpful method for stability of slopes in front of earthquake and dynamic forces.

Page 1 of 1 | Total Record : 6


Filter by Year

2017 2017


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue