cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 19 Documents
Search results for , issue "Vol 4, No 3 (2018): March" : 19 Documents clear
Scale Effects of Footings on Geocell Reinforced Sand Using Large-Scale Tests A. Shadmand; Mahmoud Ghazavi; Navid Ganjian
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1036.542 KB) | DOI: 10.28991/cej-0309110

Abstract

The scale effect on bearing capacity of shallow footings supported by unreinforced granular soils has been evaluated extensively. However, the subject has not been addressed for shallow footings on geocell-reinforced granular soils. In this study, load-settlement characteristic of large square footings is investigated by performing large-scale loading tests on unreinforced and geocell-reinforced granular soils. The effects of footing width (B), soil relative density of soil (Dr), and reinforcement depth (u) have been investigated. The test results show that the scale effects exist in geocell-reinforced soils, like unreinforced soils, and the behavior of small-scale models of footings cannot be directly related to the behavior of full-scale footings due to the difference between initial conditions of tests and the initial state of mean stresses in the soil beneath the footings having different dimensions. Large footings create higher mean stresses in the soil, resulting in low soil friction angle and initial conditions of the test approach to the critical state lines. The results of tests indicate that model experiments should be conducted on low-density soil for better prediction of the behavior of full-scale footings, otherwise, the predicted behavior of full-scale footings does not seem conservative.
Optimization of Process Parameters by Response Surface Methodology for Methylene Blue Removal Using Cellulose Dusts Seyed Hassan Sharifi Pajaie; Saltanat Archin; Ghasem Asadpour
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1158.731 KB) | DOI: 10.28991/cej-0309121

Abstract

This study was aimed to use Cellulose dusts (CD) produced in drying section of paper mills of paper making industry as a potential adsorbent to remove methylene blue (MB) dye from aqueous solution.  The adsorbent was characterized by scanning electron microscopy and Fourier transform infrared spectrometer and X-ray Diffraction. The influences of the effective parameters including pH solution, adsorbent dosage, initial MB concentration, and contact time were optimized by CCD which stands for central composite design. The influence of these parameters on the adsorption capacity was analyzed using the batch process. The accuracy of the equation that is produced by CCD was affirmed by the variance analysis and also by calculating the correlation coefficient that connects the predicted and the empirical values of the percentage of removed MB dye. Maximum removal percentage of MB dye (98.05 %) which obtained at pH 9.84, adsorbent dosage 4.38 g L-1, MB concentration 75.50 g L-1 and time 208.13 min. Freundlich, Temkin, Harkins-Jura and Langmuir isotherms are used to analyze the empirical data. Results revealed that the data is in a satisfying agreement with the Freundlich isotherm (R2= 0.99). Pseudo-first order, Pseudo-second-order, Elovich and Intraparticle diffusion models were used to fit the kinetic data and it is found out that MB dye’s adsorption onto CD has a good agreement with the pseudo-second-order kinetic model. The results showed that CD can be an efficient and low-cost adsorbent for methylene blue adsorption.
Spent Bleaching Earth Recovery of Used Motor-Oil Refinery Sabour, Mohammad Reza; Shahi, Mahsa
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1107.94 KB) | DOI: 10.28991/cej-0309116

Abstract

Bleaching earth refers to natural or activated clay which has the capacity to adsorb colored materials and other impurities during oil purification processes. This research utilized the spent bleaching earth (SBE) in used motor oil purification process via thermal remediation (650 ˚C) and acid washing methods (1 M HCl). Then, the activated spent bleaching earth (ASBE) was characterized. The results obtained from the BET analysis show the specific surface area and pore volume of the ASBE, activated virgin bleaching earth (AVBE) and virgin bleaching earth (VBE). These parameters are 100.38 m2g-1 and 0.23 cm3g-1 for the activated spent bleaching earth, 100.82 m2g-1 and 0.22 cm3g-1 for the activated virgin bleaching earth and 83.34 m2g-1 and 0.19 cm3g-1 for the virgin bleaching earth. The BJH analysis indicates that SBE activation increases mesopores in ASBE. In addition, results obtained from the XRD and FTIR tests illustrate that activation of SBE does not affect the physical and chemical properties of montmorillonite clay. Furthermore, SEM observations indicate surface morphology improvement in ASBE. Hence, activation of earth enhances its adsorption efficiency in comparison with virgin bleaching earth.
Ultimate Lateral Load Capacity of Piles in Soils Contaminated with Industrial Wastewater Mahdi O Karkush; Mahmoud S Abdul Kareem; Mustafa M Jasim
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (803.14 KB) | DOI: 10.28991/cej-0309111

Abstract

The present study devoted to determine the ultimate lateral carrying capacity of piles foundation in contaminated clayey soils and subjected to lateral cyclical loading. Two methods have been used to calculate the lateral carrying capacity of piles foundation; the first one is two-line slopes intersection method (TLSI) and the second method is a modified model of soil degradation. The model proposed by Heerama and then developed by Smith has been modified to take into consideration the effects of heavy loads and soil contamination. The ultimate lateral carrying capacity of single pile and piles group (2×2) driven into samples of contaminated clayey soils have been calculated by using the two methods. Clayey soil samples are contaminated with four percentages of industrial wastewater (10, 20, 40 and 100) % of the distilled water used in the soaking process, the soaking procedure of soil samples have been proceeded for 30 days. Also, two ratios of eccentricity to embedded length (e/L = 0.25 and 0.5) have been examined. The results obtained from two analytical methods are well agreed with those obtained experimentally. The ultimate lateral carrying capacity, Pu (analytical) /Pu (experimentally) ranged from (75-8) % and (77-80) % of single pile with e/L = 0.25 and 0.5 respectively. In the piles group the ratio ranged (67-80) % and (71-79) % for e/L = 0.25 and 0.5 respectively.
Investigating Warm and Humid Climate with the Approach of Production of Quantitative and Qualitative Architectural Models Bahoush, Maryam; Salehabadi, Amir
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2169.117 KB) | DOI: 10.28991/cej-0309122

Abstract

Climate change is one of the most significant threats facing the world today. Buildings are one of the largest energy consuming sectors in the world. Most contemporary buildings are highly dependent on air conditioning systems and electricity, reliant on fossil fuels and increasingly unable to adapt to a warming climate. Irans hot and cold climatic regions are vast. With the advancement of technology, life in every weather condition is possible. Humans can provide living conditions. Passive design responds to local climate and site conditions in order to maximize the comfort and health of building users while minimizing energy use. The key to designing a passive building is to take best advantage of the local climate. Passive cooling refers to any technologies or design features adopted to reduce the temperature of buildings without the need for power consumption. Today been proven that seasonal fossil contamination causes irreparable damage to our planets ecosystem, which is the result of global warming. According to studies conducted so far, the use of clean fuel cannot alone meet our needs in severe weather conditions. Eco-friendly architecture helps to save energy by avoiding energy losses. In this paper, with the careful analysis of weather information in Dezful, computer software solutions provide architectural solutions that can be measured and can be applied to each of the suggested patterns as Checked a number. Gaven Comfort conditions in this city without any static and dynamic system is 17.7% of the year, which can be increased by 78.8% of the year using static systems.
An Experimental Study on the Simultaneous Phenol and Chromium Removal From Water Using Titanium Dioxide Photocatalyst Elaheh Faghih Nasiri; Daryoush Yousefi Kebria; Farhad Qaderi
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (520.016 KB) | DOI: 10.28991/cej-0309117

Abstract

Organic pollutants along with heavy metals and organic metal compounds may cause abnormal changes in physical and chemical parameters (acidity, alkalinity, salinity, color, smell and taste) of aquatic ecosystems and are among the serious threats of environmental health, especially the water resources. In this study, the effect of titanium dioxide photocatalyst with different concentrations (50, 100, 200, 500 and 1000 mg/l) on the simultaneous removal of phenol and heavy metal (chromium) from aqueous solution of the closed system was investigated.  In order to determine the optimal concentrations of photocatalyst, all the tests were conducted in pH =7, using ultraviolet light with 100 watt power. The highest rate of phenol and chromium removal was observed at concentration of 100 mg/ml which was equal to 72.3% and 67.2%, respectively. Study of the reaction kinetics showed that the reactions of phenol and chromium removal were zero and first-order, respectively.
Experimental Study of Silty Clay Plane Strain Tri-axial Test under RTC Path and Modified Cam-clay Model Cheng, Tao; Zhang, Yi; Yan, Keqin
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3422.721 KB) | DOI: 10.28991/cej-0309112

Abstract

The character of geomaterials is affected by stress path remarkably. Under different stress paths, the stress-strain characteristics of geomaterials are difference. For the unloading path in existing engineering situation, the physical parameters and constitutive model is usually determined by loading test. The path to uninstall the actual project conditions which may be a larger error. Therefore, this work proceeding from the actual project, deep excavation of the lateral unloading condition is analysed. The tests of CTC path and RTC path on silty clay in Huangshi city of china by multi-path tri-axial plane strain are carried on in the geotechnical Engineering Laboratory of Huangshi Institute of Technology. Then, the phenomenon under the two stress paths are compared with each other and describing the differences between them. The mechanical properties in the RTC stress path is analyzed mainly. Based on the Cam-Clay model framework, then derived this material yield equation based on Cam-clay model, Laiding the foundation for the numerical analysis.
The Effect of Local Fuse on Behavior of Concentrically Braced Frame by a Numerical Study Ali Kachooee; Mohammad Ali Kafi; Mohsen Gerami
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1374.529 KB) | DOI: 10.28991/cej-0309123

Abstract

The concentrically braced frames (CBFs) are one of the most widely used lateral load-resisting systems. Seismic performance of these structures has a weakness that is due to the brace buckling at a lower loading than the ultimate compressive loading capacity. In this paper, attempt is made to enhance the seismic response of CBFs through utilizing a local fuse. For this purpose, first the formulation of fuse area and length are presented. Then based on this formulation, several numerical models have been built and analyzed to examine the effect of implementing this fuse on seismic response of CBFs. From the analyses results, it is found that if the reduced cross-section fuse (RCF) is properly designed and also the end of brace is fixed, the CBFs with equal energy dissipation capacity, that are equipped with this fuse exhibit a better ductility than the customary CBFs.
Reliability Analysis of High Rise Building Considering Wind Load Uncertainty Yi Zhang; Keqin Yan; Tao Cheng
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (869.086 KB) | DOI: 10.28991/cej-0309106

Abstract

In engineering structures, the safety problems are always depending on the respond of structures to different types of load. The safety assessment of a high rise building is highly depending on the analysis of environmental load. Many codes and practices have proposed many requirements for engineers in the design works. These include safety factors, limitations on damage, maximum deflections and so on. When violations in these requirements occur, the structure is believed to be dangerous. But once the problem becomes complicated such as multiple unknown loads in one building, it requires reliability analysis in the design. It must take care of all the assumptions and uncertainties in the structural design. In probabilistic assessment, any input variable is considered as an uncertainty. However, the traditional way to deal with these problems may have problems when uncertainties are large. Many probabilistic safety measures need to be reconsidered in engineering work. This paper, we will provide reliability analysis on a high rise building with consideration of wind load. All the most commonly applied reliability methods are been utilized in this analysis and compared base on the performance. The statistical influences including correlation and distribution type are also discussed in the same reliability problem.
An Experimental Study on the Effect of Tire Powder on the Geotechnical Properties of Clay Soils Akbarimehr, Davood; Aflaki, Esmael
Civil Engineering Journal Vol 4, No 3 (2018): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (481.387 KB) | DOI: 10.28991/cej-0309118

Abstract

With respect to the increasing production of tire wastes, the use of these wastes as an additive in civil engineering has always gained attentions of researchers due to their positive effects on material properties and reduction of environmental problems. Clay soils, as problematic soils, have always caused geotechnical problems including high Atterberg limits and consequently low workability. Tire powder, as one of the products of tire wastes, lacks clay cohesion and it can be effective in altering the plasticity of clay soils. As no comprehensive study has been conducted in this regard specifically on Tehran clay soil yet, this research studies experimentally the effect of adding different percentages of tire powder to clay soil at the Atterberg limits of clay soils with two different types of plasticity. More over according to previous studies, the effect of tire powder on other geotechnical properties of clay soils and the advantages and disadvantages of using tire powder in clay soils are discussed. The results indicate that addition of tire powder to clay soils has positive effects on reducing the Atterberg limits, increasing efficiency, and improving resistance, permeability, swelling reduction, and settlement properties, and reducing soil density and it can be used as an additive in improving clay soils.

Page 1 of 2 | Total Record : 19


Filter by Year

2018 2018


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue