cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 22 Documents
Search results for , issue "Vol 4, No 5 (2018): May" : 22 Documents clear
Fuzzy AHP Method for Selection of a Suitable Seismic Retrofitting Alternative in Low-Rise Buildings Pashaei, Reza; S. Moghadam, Abdolreza
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (744.451 KB) | DOI: 10.28991/cej-0309157

Abstract

Decision making for selecting an appropriate alternative among nominated alternatives is still a problem among retrofit designers. It is clear that selected alternative should comply the current codes in terms of structural criteria, but the other criteria may not be considered. The main goal of this study is to introduce a suitable method for making a decision in order to find the best alternative considering the effective criteria in retrofitting of low-rise buildings. Analytic Hierarchy Process (AHP), as a technique of Multi-Criteria Decision Making (MCDM), is compatible to solve the problem. Effective criteria have been categorized to structural, operational, economic and functional criteria and sixteen sub-criteria considered as a pattern that satisfies the entire involved group including structural and architectural engineers, contractor, client, and authorities in retrofitting of low-rise buildings. Since most of the involved criteria such as aesthetic, durability, and compatibility have fuzzy nature and cannot be compared numerically, fuzzy AHP can be a compatible method for comparison different retrofitting alternatives among both fuzzy and non-fuzzy criteria. A matrix of pair-wise comparison (MPC) is used for determining the weight of criteria and also for scoring the alternatives respect to each criterion. A Fuzzy Importance scale with Triangular Fuzzy Numbers (TFN) is applied for comparing the criteria. The method is examined by a case study and the results show the used method can help designers for selecting the appropriate alternative.
A Numerical Analysis of Reinforced T Shaped Concrete Beams by Polymeric Strap of CFRP and GFRP with Finite Element Method Technique Mehrdad Marefat Naeini; Sayed Mahdi Moghadasi; Mostafa Omidi Bidgoli
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1233.192 KB) | DOI: 10.28991/cej-0309152

Abstract

In recent decades, researchers and structural engineers have shown great interest in the use of Fiber Reinforced Polymer (FRP) plates/sheets for maintaining strength and durability in the utilization of concrete structures. In this study, reinforced-concrete beam with T-shaped cross-section is reinforced with Carbon Fiber Reinforced Plastic (CFRP) plates and Glass Fiber Reinforced Plastic (GFRP) plates under 4-points inflections by finite element method. In order to analyze the performance of the polymer plates used in the reinforcement of the considered concrete beams, some sheets with 5cm and 10 cm width having different formation patterns are joined to the concrete area. For this purpose, the angle between the lines of the plates and the longitudinal axis of the beam is varied based on four different degrees of gradations, from 30 to 90°. In addition, the role of these sheets in limiting the deformation of the beam in its U-shaped and full-wrapping conditions is studied. The transversal distance between the plates is also considered as equal to the width of plates. Seventy-two samples of concrete beams with C30 and C50 grades which were strengthened with polymer plates are compared with non-polymeric concrete beams. The numerical analysis results illustrate that the use of the different formation patterns and deflection angle of plates cause differences in the process of beam settlement. Further, the results show that C50 grade concrete samples are most effective in the reduction of concrete deformation when carbon fibers of 5cm width are used at an angle of 30 degrees with beam linear axis and traversal formation pattern. On the other hand, among the C30 grade samples, the best performance is related to the use of 5 cm carbon fibers which were utilized as full-wrapping. Under both aforementioned circumstances, the possible amount of the polymeric beam settlement over non-polymeric beam will decrease by about 50%.
An Analogue Experiment on Pervious Concrete Subject to Dust Fall Blocking Lin, Qijian; Choufu, Liang
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (908.229 KB) | DOI: 10.28991/cej-0309147

Abstract

Increased urbanization comes with increased traffic volume which gradually decrease the draining effect of porous asphalt concrete through porosity blocking. This study aims to discuss clogging as a result of dust or sand and the subsequent changes at the permeability function after rainfall. Four groups of pervious concrete mixtures were prepared. Aggregates were coarse and fine bottom ashes from the refuse incinerator. Prior to conducting the experiments, the permeability in the groups ranged from 1399.75 ~ 1412.91 ml/15sec. We adopted the 2011 average monthly dust fall in Pingtung County and magnified it by 10 and 20 times to simulate natural dust fall and clump dust fall on the pavement. Ruling out other factors, our results suggest that natural dust fall has little influence on the water permeability of pervious concrete. Water permeability was reduced sharply when the natural dust fall was increased 15 times. Moreover, it never surpassed the 400 ml/15sec minimum of the Japanese porous pavement technical indicator.
Developing an ANN Based Streamflow Forecast Model Utilizing Data-Mining Techniques to Improve Reservoir Streamflow Prediction Accuracy: A Case Study Hamed Zamanisabzi; James Phillip King; Naci Dilekli; Bahareh Shoghli; Shalamu Abudu
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4005.624 KB) | DOI: 10.28991/cej-0309163

Abstract

This study illustrates the benefits of data pre-processing through supervised data-mining techniques and utilizing those processed data in an artificial neural networks (ANNs) for streamflow prediction. Two major categories of physical parameters such as snowpack data and time-dependent trend indices were utilized as predictors of streamflow values.  Correlation analysis of different models indicate that, for the period of January to June, using fewer predictors led to simpler modeling with equivalent accuracy on daily prediction models. This did not hold in all periods. For monthly prediction models, accuracy was improved compared to earlier works done to predict monthly streamflow for the same case of Elephant Butte Reservoir (EB), NM. Overall, superior prediction performance was achieved by utilizing data-mining techniques for pre-processing historical data, extracting the most effective predictors, correlation analysis, extracting and utilizing combined climate variability indices, physical indices, and employing several developed ANNs for different prediction periods of the year.
Analysis and Evaluation of the Role of Mass Media on Urban Branding in Tourism Yazdani, Mohammadhasan; Alipour, Ebrahim; Dashti, Amir Hesam; Arzhengi, Bahram
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (487.117 KB) | DOI: 10.28991/cej-0309158

Abstract

One of the Provinces competitiveness components in attracting tourists is the urban tourism branding and one of the most influential factors in this field is advertising and informing through the mass media which was a key point and the main goal in this research. This is of applied type in terms of purpose and research and describes the correlation between variables and is a survey way in terms of research method. The statistical sample of this study was 371 people who were selected by stratified random sampling. Finally, the data were analyzed by SPSS software and the variables were evaluated by AHP and ANP methods. The results of the pair comparison of the criteria indicated that the media advertising with the coefficient of 0.3352 has priority over other criteria for urban tourism development based on urban branding. Interpretation of the results of the standardized regression coefficients, namely beta (Beta), showed that the representation of tourism places in the form of tangible facts with beta of 289.0 had the greatest impact on the variable of tourism development and the establishment of urban branding. Therefore, a standard deviation in the representation variable increased the development rate of tourism by a standard deviation of 289.0, on the contrary.
Mechanical properties of concrete containing Fly Ash, Rice Husk Ash and Waste Glass Powder Salem Al-Ahdal, Basheer Mohammed; Xiong, Li Bi; Tufail, Rana Faisal
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (951.678 KB) | DOI: 10.28991/cej-0309153

Abstract

This paper for the first time investigates the workability, compressive and tensile strength of concrete containing Fly Ash, Rice Husk Ash and Waste Glass Powder. Seventy six cube specimen (150  150  150 mm were cast with different composition of Fly Ash, Rice Husk Ash ,Waste Glass Powder and steel fibers. The cubes were tested for axial compression and tensile tests. The research also investigated the effect of curing regime on the compressive and tensile strength of concrete cube specimen. The results revealed that the addition of 15 % Rice Husk Ash and 39% Fly Ash increased the workability of 25 % as compared to the controlled concrete. The sample containing 10 % Rice Husk Ash, 10% Waste Glass Powder and 39% micro silica produced worst workability as it decreased the workability up to 5 % of controlled concrete. The results for axial compressive strength shows that the addition of 15% Rice Husk Ash (RHA) and 39% of Fly Ash (FA) in concrete leads to the improvement of compressive strength by 14%. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to the improvement by 53.9 for compressive. The replacement  of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP ), 39 % of micro silica (MS) 3% steel fiber in concrete leads to the improvement by 37% for compressive strength. It was observed from the results of tensile strength that the samples containing 15% Rice Husk Ash (RHA) and 39 % of Fly Ash (FA) increased the tensile strength by 24% as compared to the controlled concrete. The sample containing replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP) and 39 % of micro silica (MS) in concrete leads to an increase of 20% as compared to the controlled ones. Also, the replacement of 10% Rice Husk Ash (RHA), 10% waste glass powder (WGP), 39 % of micro silica (MS) 3% steel fiber increased the tensile strength by 40 % as compared to the controlled concrete sample. Finally, it was concluded that the replacement of 10% RHA, 39% micro Silica, 10% WG in concrete was found to be superior for increasing the mechanical properties of concrete.
Simulation of the Behavior of Corrosion Damaged Reinforced Concrete Beams with/without CFRP Retrofit Masoud Zabihi-Samani; Mohsen Ali Shayanfar; Amir Safiey; Amir Najari
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1598.685 KB) | DOI: 10.28991/cej-0309148

Abstract

Harsh environmental conditions along with aggressive chemical agents are known as one of the main reasons behind damages observed in reinforced concrete members. Corrosion of reinforcement worldwide is one of the leading causes of damages occurred in reinforced concrete over the lifespan. There are many critical energy and transportation infrastructures located on coastal regions exposed to high humidity and chloride content where they are highly prone to reinforcement corrosion. This calls for retrofit methods, which safeguard not only the strength but also the durability of corrosion deteriorated reinforced concrete structures. Carbon fiber polymers considering their mechanical and chemical properties are recognized as one of the main retrofit techniques. In this study, the influence of different levels of corrosion on the structural behavior of reinforced concrete beams is studied. ABAQUS software package is employed to simulate the nonlinear behavior of reinforced concrete beams with tensile reinforcements and stir-ups corrosion degrees of 20% and 40%. The structural behavior of original damaged specimen as well as the same specimen strengthen with carbon fiber reinforced polymer (CFRP) is studied. The purpose of the retrofit is compensate for the loss of shear and flexural capacity of the member due to corrosion. Different variants for the arrangement of CFRP strips are studied and compared. The result of the current research further uncaps the efficiency of fiber polymers to secure strength and durability of corrosion damaged reinforced concrete members.
Evaluate the use of Recycled Asphalt Pavement (RAP) in the Construction of Roller Compacted Concret Pavement (RCC) Yaser Bashkoul; Hassan Divandari
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (533.898 KB) | DOI: 10.28991/cej-0309164

Abstract

One of the issues and problems of today's world is the massive amount of debris and trashes, especially asphalts resulting from the removal of worn-out pavements of urban roads. Recycled asphalt crumbs (RAP) are waste materials that certainly have significant undesirable effects on the surrounding environment. Given the properties reported by these materials, there are various ways to reuse these materials. One of the applications that has been considered by researchers is the use of these materials in cement mixtures, including concrete production. This is while a large amount of asphalt fragment is continuously produced in the repair and maintenance of roads. It is therefore desirable to be used in conventional mixtures used in construction of road pavements. In this regard, the present study investigates the use of recyclable asphalt materials in pavement roller shuttle (RCC) with the aim of reducing waste and its negative impacts on the environment. By examining the documentation and performing numerous experiments, it has been found that roller concrete made from recycled asphalt can be used as a suitable pavement for low traffic and rural roads, as well as for the final covering of a wide range of sidewalks.
Comparison of Three Intelligent Techniques for Runoff Simulation Mahsa H. Kashani; Reza Soltangeys
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (866.521 KB) | DOI: 10.28991/cej-0309159

Abstract

In this study, performance of a feedback neural network, Elman, is evaluated for runoff simulation. The model ability is compared with two other intelligent models namely, standalone feedforward Multi-layer Perceptron (MLP) neural network model and hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) model. In this case, daily runoff data during monsoon period in a catchment located at south India were collected. Three statistical criteria, correlation coefficient, coefficient of efficiency and the difference of slope of a best-fit line from observed-estimated scatter plots to 1:1 line, were applied for comparing the performances of the models. The results showed that ANFIS technique provided significant improvement as compared to Elman and MLP models. ANFIS could be an efficient alternative to artificial neural networks, a computationally intensive method, for runoff predictions providing at least comparable accuracy. Comparing two neural networks indicated that, unexpectedly, Elman technique has high ability than MLP, which is a powerful model in simulation of hydrological processes, in runoff modeling.
Application of Electrodialysis Process for Reduction of Electrical Conductivity and COD of Water Contaminated By Composting Leachate Parsa, Nazila; Khajouei, Golnoosh; Masigol, Mohammadali; Hasheminejad, Hasti; Moheb, Ahmad
Civil Engineering Journal Vol 4, No 5 (2018): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (656.21 KB) | DOI: 10.28991/cej-0309154

Abstract

The presented paper describes an experimental study to reduce electrical conductivity (EC) of composting leachate-polluted water by using electrodialysis (ED) process. High efficiency, simple operation, low waste generation and selectivity are considered as major advantageous of applying ED process. Along with evaluation of ED method for desalination, the possibility of the process for COD (chemical oxygen demand) removal was also studied. The impact of- applied voltage, feed concentration and process time on ED performances were investigated. Increasing of the applied voltage and decrease of feed concentration enhanced the reduction of EC and improved the COD removal from the sample. At optimal condition (Voltage=10 Volt, feed solution=Cf/4 and time operation=120 min), the reduction of EC and COD removal were 92.7%, and 83.8%, respectively. Applying higher voltage and using more feed solution concentrations resulted in more energy consumption. The obtained results showed that ED method can be considered as an acceptable method to reduce salt and organic content.

Page 1 of 3 | Total Record : 22


Filter by Year

2018 2018


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue