cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 16 Documents
Search results for , issue "Vol 6, No 2 (2020): February" : 16 Documents clear
The Fire Exposure Effect on Hybrid Reinforced Reactive Powder Concrete Columns Hasanain A. Shubbar; Nameer A. Alwash
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091476

Abstract

This paper offers an experimental investigation of the fiber reinforced reactive powder concrete columns' behavior after exposure to fire and improvements made to improve column resistance against fire. This study is mainly aimed to study the experimental behavior of hybrid reinforced columns produced by reactive concrete powder (RPC) and exposure to the flame of fire at one side and subjected to eccentric load. The experimental methodology consists of sixteen RC columns that organized into four groups based on the variables used in this research: (SF) steel fibers, (PP) polypropylene fibers, (HB) hybrid fibers, (PPC-SF) hybrid cross-section (steel fiber reactive powder concrete core with polypropylene fiber reactive powder concrete cover). All columns were tested under 60 mm eccentric load and the burn columns were exposed to fire for different duration (1, 1.5 and 2) hours. The results indicated that (SF-RPC, PP-RPC, HB-RPC, PPC-SFRPC) columns exposed to a fire flame for the period 2 hours, lost from their load capacity by about (54.39, 40.03, 34.69 and 30.68) % respectively. The main conclusion of this paper is that the best fire resistance of the column obtained when using a hybrid cross-section (steel fiber reactive powder concrete core with polypropylene fiber reactive powder concrete cover).
Assessment of SMC Frames under Different Column Removal Scenarios Mariam Mohammed Ehab; Mina Mokhtar Maxi
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091471

Abstract

Throughout the past decades, failure of structures threatening the lives of humans had been popular whether through structure failure due to human error such as Hyatt Regency walkway collapse, 1981, terrorist attacks on the American embassy attack in Nairobi, Kenya 1998 and the famous 9/11 attacks in 2001 and many more. As a result of these incidents, The Unified Facilities Criteria (UFC) was developed concerning the progressive collapse issues by analyzing different types of structures under column loss and studying the overall structural behavior. However, the (UFC) didn’t scope on the local behavior of the structural components and its connection under column loss. In this research, the main objective is to study the local behavior of the special moment frame connection (SMC) under column loss. A detailed study is conducted on a 3D model fully designed by adopting the strong-column weak-beam approach following the ACI318-14 regulations. Two frames are selected from the designed structure, interior and exterior frames, to apply the column loss scenario in different locations and different floor levels. The Applied Element Method is adopted in the study. Non-linear time-dependent dynamic analysis is implemented to apply the different column removal scenarios. Twelve case studies are modeled in detail using the Extreme Loading for Structures (ELS) software at which all elements are modeled and analyzed in a 3D model technique. After analyzing the different case studies, structure behavior is observed. Some cases encountered total collapse, other cases encountered partial /local collapse and finally, some survived the column loss scenario. Many parameters are involved and studied in the research.  Failure pattern is observed for collapsed cases, the cause of failure is monitored and studied. Special moment connection behavior is studied concerning the shear connection capacity. The location of the column removal with the type of frame selected played an important role in changing the structural behavior from one case to another. As a result, it is not applicable to assume that due to the special moment connection ductility, the structure will be able to resist the column loss in all cases.
Effective Utilization of Municipal Solid Waste as Substitute for Natural Resources in Cement Industry Rehman, Abdur; Khan, Kashif Ali; Hamid, Tayyaba; Nasir, Hassan; Ahmad, Izhar; Alam, Muhammad
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091467

Abstract

The aim of this study was to evaluate the municipal solid waste (MSW) composition of Peshawar city and its affective utilization for energy purpose in the cement industry. A total 14 days consecutive testing of MSW samples was conducted for winter and summer periods for the purpose of evaluation of the waste composition followed by calculating its heating values. Compliance level of MSW at source was determined which was based upon the questionnaire distribution followed by the financial analysis and feasibility evaluation of the project. The results revealed that the average waste composition of the samples consists of organic waste contents (20.72%), combustible items (37.86%), readily saleable items (20.95%) and other miscellaneous waste items (20.46%). Moreover, the samples were then tested for the evaluation of calorific value and it was found that the heating value of MSW is recorded up to 35513 KJ/Kg whereas; the value for coal is around 38000 KJ/Kg. These findings revealed that the replacement of coal by MSW may be more efficient and might be effectively utilized in the production of cement as the energy production of MSW and coal is nearly same. In addition, the utilization of MSW as a replacement of coal has a great potential of enhancing the service life of the landfills. Besides, NPV analysis of this study revealed that the project is worthwhile to be implemented as it shows high returns regarding financial aspects.
Particle Swarm Optimization Based Approach for Estimation of Costs and Duration of Construction Projects Khalaf, Tarq Zaed; Çağlar, Hakan; Çağlar, Arzu; Hanoon, Ammar Nasiri
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091478

Abstract

Cost and duration estimation is essential for the success of construction projects. The importance of decision making in cost and duration estimation for building design processes points to a need for an estimation tool for both designers and project managers. Particle swarm optimization (PSO), as the tools of soft computing techniques, offer significant potential in this field. This study presents the proposal of an approach to the estimation of construction costs and duration of construction projects, which is based on PSO approach. The general applicability of PSO in the formulated problem with cost and duration estimation is examined. A series of 60 projects collected from constructed government projects were utilized to build the proposed models. Eight input parameters, such as volume of bricks, the volume of concrete, footing type, elevators number, total floors area, area of the ground floor, floors number, and security status are used in building the proposed model. The results displayed that the PSO models can be an alternative approach to evaluate the cost and-or duration of construction projects. The developed model provides high prediction accuracy, with a low mean (0.97 and 0.99) and CoV (10.87% and 4.94%) values. A comparison of the models’ results indicated that predicting with PSO was importantly more precise.
Hydrochemical Characterisation of Groundwater Quality: Merdja Plain (Tebessa Town, Algeria) Houria, Baazi; Mahdi, Kalla; Zohra, Tebbi Fatima
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091473

Abstract

The objective of this work is to evaluate the physico-chemical quality of the groundwater of the Merdja plain and to determine the sources of mineralization. This quality is influenced by several environmental and anthropogenic factors such as geological context, climate, precipitation and interaction between groundwater and aquifers and human activities.  A Principal Component Analysis (PCA) on samples taken from several wells spread over the entire Tebessa plain (Merdja) allowed us to detect two axes that explain 73.4% of the information. The first axis describes the variables related to mineralisation and the second one describes those related to agricultural activity. Multidimensional Positioning (MDS) confirmed the interaction of physico-chemical parameters between them and their influence on groundwater quality by highlighting three groups of wells according to their physico-chemical characteristics, particularly those containing high concentrations of nitrates. This contamination is mainly the result of spreading the fertilisers and wastes that are dumped into the plain without treatment. Salinization is the result of long-term interactions between groundwater and geological formations.
Laboratory Investigation on Interaction of the Pile Foundation Strengthening System with the Rebuilt Solid Pile-Slab Foundation Y. A. Pronozin; M. A. Stepanov; D. V. Rachkov; D. N. Davlatov; V. M. Chikishev
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091468

Abstract

The article presents the results of laboratory studies of pile model foundations in order to determine the effectiveness of the method proposed by the authors for its reconstruction in pile-tile foundation with preliminary pressing and cementation of the soil base. The studies were carried out on small-scale wooden models of foundations in the conditions of a soil paste. The models of foundations were subjected to vertical static loading in a laboratory tray with a diametrical transparent wall. The program of experiments was provided for determination of precipitation of the models: pile foundations without strengthening, with strengthening in the form of reconstruction from the combined foundation and with strengthening in the form of reconstruction into the combined foundation with preliminary stress of the soil base in the span part. Vertical and horizontal movements in the soil mass were also recorded by a contactless method (PIV) in every stage of model loading. On the basis of experimental measurements digital processing of data of sediments and displacements is performed, for drawing plots of sediments, epures and isolines of displacements in the soil base. The main result of the research is confirmation of the high efficiency of the proposed method of strengthening pile foundations due to the maximum use of pre-pressed soil base resources in spans between pile rows. It has been found that compression (pre-stress) significantly reduces soil deformability and allows to include it in operation without additional deformations. The use of pre-compaction reduced the precipitation of the model combined foundation by almost 40%, relative to the combined without compaction. The results of the research open the possibility to develop new methods of strengthening pile foundations from the point of view of effective inclusion in the operation of the soil base in the span part, due to its preliminary tension.
Analysis of Streamflow Response to Changing Climate Conditions Using SWAT Model Han Thi Oo; Win Win Zin; Cho Cho Thin Kyi
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091464

Abstract

The understanding of climate change is curial for the security of hydrologic conditions of river basins and it is very important to study the climate change impacts on streamflow by analyzing the different climate scenarios with the help of the hydrological models. The main purpose of this study is to project the future climate impact on streamflow by using the SWAT model. The multi-model projections indicated that Upper Ayeyarwady River Basin is likely to become hotter in dry season under low rainfall intensity with increasing temperature and likely to become wetter but warmer in both rainy and winter season because of high rainfall intensity with increased temperature in future. The impact of climate change scenarios is predicted to decrease the annual streamflow by about 0.30 to 1.92% under RCP2.6, 5.59 to 7.29% under RCP4.5 and 10.43 to 11.92% under RCP8.5. Based on the change in high and low flow percentage with respect to the baseline period, the difference between high and low flow variation range will increase year by year based on future scenarios. Therefore, it can be concluded that it may occur more low flow in the dry season which leads to increase in water scarcity and drought and more high flow in the wet season which can cause flooding, water insecurity, stress, and other water-related disasters.
Cementitious, Pozzolanic And Filler Materials For DSM Binders John Kok Hee Wong; Sien Ti Kok; Soon Yee Wong
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091479

Abstract

Deep Soil Mix (DSM) is a proven method of ground improvement for deeper underlying soft soil layers which are otherwise impractical to reach using conventional shallow soil stabilization and replacement methods. The predominant binder materials used are Ordinary Portland cement (OPC) and Lime (CaO) but negative effects to the environment from manufacture and increasing construction cost have prompted research into alternative materials. This review identifies pozzolans and filler materials as possible supplements or partial substitutes for better results. The DSM method and binder reaction processes during treated soil strength development are outlined and effectiveness of different pozzolans (Fly Ash, Silica Fume, Ground Granulated Blast Furnace Slag, Rice Husk Ash, Kaolin, and Metakaolin) and filler materials (e.g. fine sand) discussed together with their influence factors. With many pozzolans, a clear optimum dosage is observed where improved strength peaks. Aluminosilicate pozzolans perform better over siliceous pozzolans with Metakaolin (MK) identified as the most effective pozzolan for enhancing compressive strength. Up to date research results on these materials are compiled. MK blended cements are readily available and can be readily applied for initial field tests. Treated soil strength may be regulated with addition of filler materials to further reduce reliance on cement.
Research on Application of Buckling Restrained Braces in Strengthening of Concrete Frame Structures Ferdinand, Niyonyungu; Jianchang, Zhao; Qiangqiang, Yang; Wang, Guobing; Junjie, Xu
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091475

Abstract

This paper examines the application of BRB in strengthening of reinforced concrete frame structures to meet seismic requirements according to Chinese seismic design code. Elastic response spectrum analysis and nonlinear time history analysis are performed by taking a real engineering example that suffers weak first floor irregularity due to added loads and addition of one floor. With the method of equivalent stiffness and displacement-based design method, buckling restrained brace parameters are deduced and are used to model BRB in ETABS using plastic wen model. Three configurations of buckling restrained braces are studied together with ordinary braces. Under elastic state, the relationship between the required cross section area of BRB and ordinary braces is deduced from the formula of calculating elastic bearing capacity where it is shown that the area of the ordinary braces must be 1.25 times that of BRB for ensuring the same performance. The results show that Inverted V brace configuration demonstrated better performance over single brace and V brace configurations and X brace configuration, although not recommended by Chinese code, is simulated and used in this paper and has demonstrated better performance over other configurations, and the further research on the practical use of this brace is recommended. Also, under action of strong earthquakes, by nonlinear time history analysis, buckling restrained braces demonstrated better performance of strengthening the structure and make it meet the requirement of code. Under this same condition, ordinary braces losses their bearing capacity due to excessive buckling.
Weather Impact on Passenger Flow of Rail Transit Lines Yongqing Guo; Xiaoyuan Wang; Qing Xu; Shanliang Liu; Shijie Liu; Junyan Han
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091470

Abstract

Passenger flow prediction is important for the planning, design and decision-making of urban rail transit lines. Weather is an important factor that affects the passenger flow of rail transit line by changing the travel mode choice of urban residents. A number of previous researches focused on analyzing the effects of   weather (e.g. rain, snow, and temperature) on public transport ridership, but the effects on rail transit line yet remain largely unexplored This study aims to explore the influence of weather on ridership of urban rail transit lines, taking Chengdu rail transit line 1 and line 2 as examples. Linear regression method was used to develop models for estimating the daily passenger flow of different rail transit lines under different weather conditions. The results show that for Chengdu rail transit line 1, the daily ridership rate of rail transit increases with increasing temperature. While, for Chengdu rail transit line 2, the daily ridership rate of rail transit decreases with increasing wind power. The research findings can provide effective strategies to rail transit operators to deal with the fluctuation in daily passenger flow.

Page 1 of 2 | Total Record : 16


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue