cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 6, No 6 (2020): June" : 15 Documents clear
One-Dimensional Hydrodynamic Modeling of the Euphrates River and Prediction of Hydraulic Parameters Nassrin Jassim Hussien Al-Mansori; Laith Shaker Ashoor Al-Zubaidi
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091530

Abstract

Forecasting techniques are essential in the planning, design, and management of water resource systems. The numerical model introduced in this study turns governing differential equations into systems of linear or non-linear equations in the flow field, thereby revealing solutions. This one-dimensional hydrodynamic model represents the varied unsteady flow found in natural channels based on the Saint-Venant Equations. The model consists of the equations for the conservation of mass and momentum, which are recognized as very powerful mathematical tools for studying an important class of water resource problems. These problems are characterized by time dependence of flow and cover a wide range of phenomena. The formulations, held up by the four-point implicit finite difference scheme, solve the nonlinear system of equations using the Newton-Raphson iteration method with a modified Gaussian elimination technique. The model is calibrated using data on the Euphrates River during the early spring flood in 2015. It is verified by its application to an ideal canal and to the reach selected at the Euphrates River; this application is also used to predict the effect of hydraulic parameters on the river’s flow characteristics. A comparison between model results and field data indicates the feasibility of our technique and the accuracy of results (R2 = 0.997), meaning that the model is ready for future application whenever field observations are available. 
Risks and Opportunities for Reforming Construction with Blockchain: Bibliometric Study Mohammad Darabseh; João Poças Martins
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091541

Abstract

Emerging technologies are always treated with caution, and Blockchain is no exception to this rule. The AECO (Architecture, Engineering, Construction, and Operations) sector is considered conservative when it comes to technology adoption, which is often positive in an industry that deals with a vital commodity that could harm humans or result in catastrophe. However, excessive caution also stifles innovation, as shown in the industry’s low R&D expenditure when compared to other industrial activities. In recent years, the AECO sector has benefited from the adoption of new information management tools and systems that allow professionals to develop, share and store construction data more effectively. These tools have successfully tackled many of the traditional interoperability issues that have affected the industry, but several challenges remain unsolved. Indeed, effective real-world communication depends, not only on the compatibility between data formats and systems, but also on issues such as privacy, transparency, and trust. Blockchain has been adopted in different activities as a tool to address these issues, but its impact in the construction industry remains scarce. This paper presents a bibliometric study for the available literature on Blockchain implementation in the AECO sector. In addition to the bibliometric review, content analysis for the literature retrieved is presented to provide a clear vision of the current directions regarding Blockchain technology adoption. The purpose of this article is to evaluate the maturity of Blockchain in Construction literature using statistics based on the available bibliometrics in addition to content analysis. The main results show that although the number of articles about the use of Blockchain in Construction has increased, no studies that present ready to use solutions were found. Instead, the covered studies discuss the technical capabilities of the technology and suggest possible fields of implementation, such as smart contracts and automated payments. Study limitations include the limited amount of literature that can be found on major indexing services, which cover a relatively short reference period.
City as Habitat; Assembling the Fragile City Francis O. Okeke; Ibem O. Eziyi; Clifford A. Udeh; Emmanuel C. Ezema
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091536

Abstract

The African continent is urbanizing at a breakneck pace and our cities are in a state of crisis. The causes may vary, so also is the degree of severity, but there is a widely felt sense of urban problems requiring urgent solutions. The nature of the problems is complex, with economic, social, educational, political and physical factors playing major roles in exacerbating the situation. Yet, whatever is perceived to be the most serious physical problems in a city, one key underlying question always present is: What can be done about the disaffection of people for their own urban environments? This issue of fragility may be seen in simple terms of a drop in the perceived desirability of the city as a place one can to live, work or shop in. Whatever the name, the fact is that too many Nigerian cities are becoming unattractive to many citizens and residents. This paper aims at identifying the various ways of assembling a fragile city. Through the review of existing literature, the paper highlights the causes of city fragility focusing on three Nigerian cities. It also discusses fragility as the main hurdle to implementing Sustainable Development Goals and how fragile situation birth architecture of fear. Then, it concludes by noting that developing nations in sub-Saharan Africa, including Nigeria need to be proactive in deconstructing their fragile cities.
Sacrificial Piles as Scour Countermeasures in River Bridges A Numerical Study using FLOW-3D Nazari-Sharabian, Mohammad; Nazari-Sharabian, Aliasghar; Karakouzian, Moses; Karami, Mehrdad
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091531

Abstract

Scour is defined as the erosive action of flowing water, as well as the excavating and carrying away materials from beds and banks of streams, and from the vicinity of bridge foundations, which is one of the main causes of river bridge failures. In the present study, implementing a numerical approach, and using the FLOW-3D model that works based on the finite volume method (FVM), the applicability of using sacrificial piles in different configurations in front of a bridge pier as countermeasures against scouring is investigated. In this regard, the numerical model was calibrated based on an experimental study on scouring around an unprotected circular river bridge pier. In simulations, the bridge pier and sacrificial piles were circular, and the riverbed was sandy. In all scenarios, the flow rate was constant and equal to 45 L/s. Furthermore, one to five sacrificial piles were placed in front of the pier in different locations for each scenario. Implementation of the sacrificial piles proved to be effective in substantially reducing the scour depths. The results showed that although scouring occurred in the entire area around the pier, the maximum and minimum scour depths were observed on the sides (using three sacrificial piles located upstream, at three and five times the pier diameter) and in the back (using five sacrificial piles located upstream, at four, six, and eight times the pier diameter) of the pier. Moreover, among scenarios where single piles were installed in front of the pier, installing them at a distance of five times the pier diameter was more effective in reducing scour depths. For other scenarios, in which three piles and five piles were installed, distances of six and four times the pier diameter for the three piles scenario, and four, six, and eight times the pier diameter for the five piles scenario were most effective.
Effect of Maximum Aggregate Size on the Strength of Normal and High Strength Concrete Gaith Abdulhamza Mohammed; Samer Abdul Amir Al-Mashhadi
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091537

Abstract

Aggregates form 60% to 75% of concrete volume and thus influence its mechanical properties. The strength of (normal or high-strength) concrete is affected by the maximum size of a well-graded coarse aggregate. Concrete mixes containing larger coarse aggregate particles need less mixing water than those containing smaller coarse aggregates, In other words, small aggregate particles have more surface area than a large aggregate particle. In this research, about twenty-two mixtures were covered to study the effect of the MSCA, on compressive strength of (normal strength concrete) and Sixteen mixtures to study the effect of the maximum size of coarse aggregate on compressive strength for (high strength concrete). The concrete mixture is completely redesigned according to the maximum size of coarse aggregate needs and maintaining uniform workability for all sizes of coarse aggregate. The American design method was adopted ACI 211.1, for normal concrete. ACI 211-4R, the design method was adopted for high strength concrete. And use the MSCA with dimensions (9.5, 12.5, 19, 25, 37.5, and 50) mm for normal strength concrete and the MSCA (9.5, 12.5, 19, and 25) mm for high strength concrete. The slump was fixed (75-100) mm for normal strength concrete. Slump is fixed to (25-50) mm for high strength concrete before added Superplasticizer high range water reducer (HRWR). With Fineness Modulus (F.M) fixed to 2.8 for both normal concrete and high-strength concrete. According to the results of the tests, the compressive strength increases with the increase in the MSCA, of the normal concrete and also high – strength concrete. And the effect of the MSCA, on the compressive strength of normal concrete, is higher than that of high-strength concrete.
Sustainable Solutions in the Hospitality Industry and Competitiveness Context of “Green Hotels” Tamara Floričić
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091532

Abstract

This interdisciplinary paper researches the importance of sustainable hotel engineering and organisation of facilities for the purposes of realisation of a sustainable and responsible hospitality facility business. Considered through the interdisciplinary aspect, at the same time, it represents a research goal with the focus on the segment of youth tourists, who, as existing consumers of low-budget expenditure, are turning into DINKY, as well as the segment of conscious adult consumers in the future. The paper, through a questionnaire, researches the perception of the importance of resource management, with the implementation of innovative technologies by youth tourists’ related attitudes and experiences. The methodology is based predominantly on qualitative research methods and includes analysis and conceptual methodology and survey research methods of youth tourists’ attitudes. The quantitative research was processed by using the statistical methodology combined with techniques of creative thinking formation. The results point to the predominance of importance in which over 90% of respondents confirm the importance of sustainable initiatives and resource management with the following rank: food, water, energy, and waste management. Further analysis implies an opposite attitude where only 52.9% of participants would be willing to pay higher prices for sustainable solutions in hotels. The results and recommendations contribute to knowledge and ideas by recognizing competitiveness of hotels, which design and engineer the business system and operations with support of sustainable technologies in an interdisciplinary way. The paper also contributes to the comprehension of combined and successfully communicated economic and marketing values of sustainable innovations supported by digital technologies.
Numerical Analysis of the Influence of Bolt Set on the Shear Resistance of Jointed Rock Masses Yan-Ping Wang; Liang-Xiao Xiong
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091527

Abstract

Bolt reinforcement is a standard reinforcement method for jointed rock masses. However, regarding rock anchoring, the mechanical characteristics of the joint surface, as well as the angle between the bolt and the joint sliding surface, are important factors that affect rock support. Therefore, to understand the influence of a set angle, length, normal load, and other conditions that affect the shear strength of bolt joints, this study uses numerical software to establish the shear sliding model of bolt rock masses and analyzes the influence of the setting conditions of the bolt on the shear strength of a bolt rock mass, which can be done by changing the setting method of the bolt and normal mechanical conditions of the sliding surface. The results show that the shear strength of the anchor joint is not affected after the anchor reaches a certain length. The angle of the anchor strongly influences the shear strength of the anchor joint, and the shear strength curve is V-shaped, where the anchor angle is less than 90°. Moreover, the shear strength curve indicates a downward trend when the anchor angle is greater than 90°, and the shear strength of the anchorage joint increases with the increase of the normal load. Under the same anchor length (4 cm) in the anchor angle and shear strength coordinate system, the shear strength curve of the single anchor is above the shear strength curve of the double anchor, which is exclusively in the local anchor angle section under the condition of a large normal load and a large anchor angle. The shear strength curve of the double anchor is above the shear strength curve of the single anchor.
Efficacy of Non-nuclear Methods Used for Hot Mix Asphalt Density Determination Shah Zaman; Muhammad Hassaan; Jawad Hussain; Umar Hayat
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091538

Abstract

This paper presents research efforts with a major purpose of determining if electromagnetic, non-nuclear density gauges (NNDG) are competent enough for asphalt density measurement in comparison to the already existing standard core method (AASHTO T-166). Field, as well as laboratory studies, were conducted to assess the abilities of available non-nuclear devices as they need the appraisal for future use in many developing countries including Pakistan. NNDG data collected from 45 locations, compared to density determined in the laboratory for the cores extracted from the same location, shows that the results obtained from both the methods are comparable. Laboratory studies conducted on the slabs of open and dense gradations show that such an instrument performed well for dense gradation in comparison to open ones. The Calibration effect of the instrument has a valuable impact on the accurate density determination. Results indicated that such gauges are seriously affected by moisture presence on the surface of testing pavement. Moreover, the temperature dependency of non-nuclear gauges is among the major outcome of this research. Overall the performance of such gauges is valuable, and the results are comparable to the standard results of core methods. However, these results can only be used for Quality Assurance (Q.A) purposes and not for Quality Acceptance (Q.C) of the density of pavement.
Incorporating of Two Waste Materials for the Use in Fine-Grained Soil Stabilization Hassnen Mosa Jafer; Zaid Hameed Majeed; Anmar Faleh Dulaimi
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091533

Abstract

The present experimental work briefly aimed to utilize two different waste materials; calcium carbide residue (CCR) and the locally available rice husk ash (RHA) to produce an eco-friendly binder for the use in fine-grained soil stabilization. The effect of different binary mixtures, produced by mixing CCR and RHA with different proportion, on the geotechnical properties of a fine-grained soil was investigated. For the unconfined compressive strength (UCS) test, the soil specimens were subjected to various curing periods (7, 21, 28 and 90 days). The microstructure of the soil treated with the optimum mixture was carried out by utilizing scanning electron microscopy (SEM) test. Results of UCS test showed an interesting growth after the treatment of binary mixtures relative to those samples treated with only CCR.  Plasticity index (PI) was found to decrease noticeably with use of CCR only while further reductions in PI were achieved after the RHA incorporation. Clear variations in the microstructure of the treated soil were revealed from SEM testing approving the creation of cementitious products. The results of the current study indicated that the wastes utilized in this investigation could be potentially used as alternatives to the conventional binders and final disposition with economic and environmental advantages.
WHEAT STRAW OPTIMIZATION VIA ITS EFFICIENT PRETREATMENT FOR IMPROVED BIOGAS PRODUCTION Memon, Muhammad Jaffar; Memon, Abdul Rehman
Civil Engineering Journal Vol 6, No 6 (2020): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091528

Abstract

The complex indigenous configuration of non-bio-labile wheat straw necessitates its pretreatment to optimize the breakdown of its structural components for its ultimate conversion into biogas by means of anaerobic digestion. In this research work, wheat straw was pretreated with potassium hydroxide (KOH) to facilitate its improved biodegradability. The pretreatment of wheat straw was also obvious in terms of its crystallinity resulting in the improved amorphous regions compared to the control wheat straw. The results showed that pretreated wheat straw digestion transpired into comparatively higher removal of TS (86%), VS (89%) and total lignin, cellulose and hemicellulose (22%) than that obtained with control wheat straw. Maximum biogas production accrued was 1550 mLN per day with optimized dosing of KOH compared to 967 mLN per day obtained with control wheat straw, implying that the cumulative biogas production was improved by 45% using pretreated wheat straw than that using control wheat straw. These results suggested that pretreated wheat straw digestion led to a significant improvement in the biogas yield.

Page 1 of 2 | Total Record : 15


Filter by Year

2020 2020


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue