cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 7, No 11 (2021): November" : 12 Documents clear
Limitations on ACI Code Minimum Thickness Requirements for Flat Slab Abd Al-Zahra, Bilal Ismaeel; Alwash, Maitham; Baiee, Ameer; Shubbar, Ali A.
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091769

Abstract

Reinforced concrete two-way flat slabs are considered one of the most used systems in the construction of commercial buildings due to the ease of construction and suitability for electrical and mechanical paths. Long-term deflection is an essential parameter in controlling the behavior of this slab system, especially with long spans. Therefore, this study is devoted to investigating the validation of the ACI 318-19 Code long-term deflection limitations of a wide range of span lengths of two-way flat slabs with and without drop panels. The first part of the study includes nonlinear finite element analysis of 63 flat slabs without drops and 63 flat slabs with drops using the SAFE commercial software. The investigated parameters consist of the span length (4, 5, 6, 7, 8, 9, and 10m), compressive strength of concrete (21, 35, and 49 MPa), the magnitude of live load (1.5, 3, and 4.5 kN/m2), and the drop thickness (0.25tslab, 0.5tslab, and 0.75tslab). In addition, the maximum crack width at the top and bottom are determined and compared with the limitations of the ACI 224R-08. The second part of this research proposes modifications to the minimum slab thickness that satisfy the permissible deflection. It was found, for flat slabs without drops, the increase in concrete compressive strength from 21MPa to 49MPa decreases the average long-term deflection by (56, 53, 50, 44, 39, 33 and 31%) for spans (4, 5, 6, 7, 8, 9, and 10 m) respectively. In flat slab with drop panel, it was found that varying drop panel thickness t2 from 0.25  to 0.75  decreases the average long-term deflection by (45, 41, 39, 35, 31, 28 and 25%) for span lengths (4, 5, 6, 7, 8, 9 and 10 m) respectively. Limitations of the minimum thickness of flat slab were proposed to vary from Ln/30 to Ln/19.9 for a flat slab without a drop panel and from Ln/33 to Ln/21.2 for a flat slab with drop panel. These limitations demonstrated high consistency with the results of Scanlon and Lee's unified equation for determining the minimum thickness of slab with and without drop panels. Doi: 10.28991/cej-2021-03091769 Full Text: PDF
Effect of Masonry Infill Panels on the Seismic Response of Reinforced Concrete Frame Structures Zine, Ali; Kadid, Abdelkrim; Zatar, Abdallah
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091764

Abstract

The present work concerns the numerical investigation of reinforced concrete frame buildings containing masonry infill panel under seismic loading that are widely used even in high seismicity areas. In seismic zones, these frames with masonry infill panels are generally considered as higher earthquake risk buildings. As a result there is a growing need to evaluate their level of seismic performance. The numerical modelling of infilled frames structures is a complex task, as they exhibit highly nonlinear inelastic behaviour, due to the interaction of the masonry infill panel and the surrounding frame. The available modelling approaches for masonry infill can be grouped into two principal types; Micro models and Macro models. A two dimensional model of the structure is used to carry out non-linear static analysis. Beams and columns are modelled as non-linear with lumped plasticity where the hinges are concentrated at both ends of the beams and the columns. This study is based on structures with design and detailing characteristics typical of Algerian construction model. In this regard, a non-linear pushover analysis has been conducted on three considered structures, of two, four and eight stories. Each structure is analysed as a bare frame and with two different infill configurations (totally infilled, and partially infilled). The main results that can be obtained from a pushover analysis are the capacity curves and the distribution of plastic hinges in structures. The addition of infill walls results in an increase in both the rigidity and strength of the structures. The results indicate that the presence of non-structural masonry infills can significantly modify the seismic response of reinforced concrete "frames". The initial rigidity and strength of the fully filled frame are considerably improved and the patterns of the hinges are influenced by structural elements type depending on the dynamic characteristics of the structures. Doi: 10.28991/cej-2021-03091764 Full Text: PDF
Urban Planning and Reconstruction of Cities Post-Wars by the Approach of Events and Response Images Suhad K. Al-Mosawy; Ahmed A. Al-Jaberi; Tuqa R. Alrobaee; Ahmed S. Al-Khafaji
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091763

Abstract

The research attempts to shed light on how to invest the philosophical and intellectual concept of the event in preparing the development plans for the city. Based on it, there are three strategies to read the event (Explanation, Interpretation, and Deconstruction) that are regularly responded to it with three strategies represented by (Revitilaization, Renewal, and Reform). Through the use of reading and response strategies, and the corresponding planning policies represented by: preservation, rehabilitation, and redevelopment. The research adopted an analytical and descriptive methodology for some world experiences for the eventful cities, such as Warsaw, which reflects (Explanation - Revitilaization) and used preservation, Bilbao, which reflects (Interpretation - Renewal) and used rehabilitation, and Tianjin, which reflects (Deconstruction - Reform) and used redevelopment. In an attempt to benefit from these experiences and derive some indicators for each strategy. By applying the derived indicators to the traditional Mosul city, it concluded that the most appropriate strategy for the reconstruction of this city is the strategy of Explanation – Revitalization, which represents preservation because the destruction of the city was intending to crush the historical and cultural value of the city and destroy the local and national identity. Doi: 10.28991/cej-2021-03091763 Full Text: PDF
A Case Study on The Mechanical and Durability Properties of a Concrete Using Recycled Aggregates Khaoula Naouaoui; Toufik Cherradi
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091768

Abstract

In Morocco, Recycled Aggregate Concrete (RAC) is not promoted unlike developed countries like France, Canada, US and many others. This article aims to present a Moroccan study related to the characterization of RAC and compare it with several studies all over the world. It focuses on compressive strength as the main mechanical characteristic and the porosity as the physical property that affects durability. The protocol is based on crushing concrete from demolished building and producing aggregates that are used in making experimental samples of RAC with different percentages of replacing Natural Aggregates (NA) by recycled ones. The first part of experimental study is to determine compressive strength of these samples after 7, 21, 28 and 90 days of confectioning it. Test results prove that above 25% of replacement level, the compression drops considerably and the Recycled Aggregates (RA) can’t replace the naturel ones. The second part of studies focuses on studying porosity as indicator of durability according to the performance approach. It concludes that the RAC may be used in a construction with a required life of 100 years specially building and roads. For high standards constructions or construction in a specific environment, more studies should be done. Doi: 10.28991/cej-2021-03091768 Full Text: PDF
A Comparative Study on Soil Stabilization Relevant to Transport Infrastructure using Bagasse Ash and Stone Dust and Cost Effectiveness Sudip Basack; Ghritartha Goswami; Hadi Khabbaz; Moses Karakouzian; Parinita Baruah; Niky Kalita
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091771

Abstract

Soft ground improvement to provide stable foundations for infrastructure is national priority for most countries. Weak soil may initiate instability to foundations reducing their lifespan, which necessitates the adoption of a suitable soil stabilization method. Amongst various soil stabilization techniques, using appropriate admixtures is quite popular. The present study aims to investigate the suitability of bagasse ash and stone dust as the admixtures for stabilizing soft clay, in terms of compaction and penetration characteristics. The studies were conducted by means of a series of laboratory experimentations with standard Proctor compaction and CBR tests. From the test results it was observed that adding bagasse ash and stone dust significantly upgraded the compaction and penetration properties, specifically the values of optimum moisture content, maximum dry density and CBR. Comparison of test results with available data on similar experiments conducted by other researchers were also performed. Lastly, a study on the cost effectiveness for transport embankment construction with the treated soils, based on local site conditions in the study area of Assam, India, was carried out. The results are analyzed and interpreted, and the relevant conclusions are drawn therefrom. The limitations and recommendations for future research are also included. Doi: 10.28991/cej-2021-03091771 Full Text: PDF
Evaluation of Parking Demand and Future Requirement in the Urban Area Abbood, Abdulkareem N.; Ahmed, Abdul R. I.; Ajam, Harith K. K.
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091767

Abstract

Whatever vehicle is traveling, it needs to stop in order to arrive road users their different goals. In most universities, parking becomes an important campus resource, for being as a place to come frequently and to spend long period. Now days parking problems increase with repaid growth of car ownership. So traffic and parking impact can be consider as a major source of contention within any community and can raise additional costs for universities, as well as urban areas facilities. The study aims to evaluate the current parking situation on the university campus in terms of the available supply and required demand of parking spaces in order to recommend future parking spaces need for the next five years. Data has had been collected according to field traffic and engineering survey, Videography method was used for this purpose. Inventories, Interviews and questionnaires included. Data analysis conducted with the aided of AASHTO and equation methods. The study concluded future parking required is 140 vehicle- spaces for the year 2026, according to population rate of growth also illegal parking leads to interference with the movements of pedestrians and their crossing, as well as reducing the capacity of the roads in the study area. Doi: 10.28991/cej-2021-03091767 Full Text: PDF
Uncertainty Analysis of Regional Rainfall Frequency Estimates in Northeast India Nilotpal Debbarma; Parthasarathi Choudhury; Parthajit Roy; Shivam Agarwal
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091762

Abstract

Estimation of rainfall quantile is an important step in regional frequency analysis for planning and design of any water resources project. Related evaluations of accuracy and uncertainty help to further assist in enhancing the reliability of design estimates. In this study, therefore, we investigate the accuracy and uncertainty of regional frequency analysis of extreme rainfall computed from genetic algorithm-based clustering. Uncertainty assessment is explored with prediction of quantiles with a new spatial Information Transfer Index (ITI) and Monte Carlo simulation framework. And, accuracy assessment is done with the comparison of regional growth curves to at-site analysis for each homogenous region. Further, uncertainty assessment with the ITI method is compared with Maximum Likelihood estimation (MLE) optimized by a genetic algorithm (GA) to check the suitability of the method. Results obtained suggest the ITI-based uncertainty assessment for regional estimates outperformed those of at-site estimates. The MLE-GA method based on at-site estimates was found to be better than at-site estimates based on L-moments, suggesting the former as a better alternative to compare with regional frequency estimates. Moreover, minimal bias and least deviation of the regional growth curve were obtained in the rainfall regions. The confidence intervals of regional estimates were seen to be well within the bounds of normality assumptions. Doi: 10.28991/cej-2021-03091762 Full Text: PDF
Fuzzy Analytical Hierarchy Processes for Damage State Assessment of Arch Masonry Bridge Mostefa Lallam; Abdelhamid Mammeri; Abdelkader Djebli
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091770

Abstract

The present work proposes a fuzzy analytical hierarchy approach for decision making in the maintenance programming of masonry arch bridges. As a practical case, we propose to classify the degradation state of the Mohammadia masonry bridge. A large number of criteria and sub-criteria are combined to classify this type of bridges through visual inspections. The main criteria (level 1) considered in this work are the history of the bridge, the environmental conditions, the structural capacity and the professional involvement of the bridge. In addition, these criteria are subdivided into several sub-criteria (level 2) which are, in turn, subdivided into sub-criteria (level 3). Considering these criteria and sub-criteria, weights Wiare calculated by fuzzy geometric mean method of Buckley. Subsequently, expert scores were assigned to calculate the overall score CS reflecting the degradation of the considered infrastructure. Thereafter, the masonry arch bridges are classified respecting the French IQOA scoring system using the overall scores value CS. The proposed classification method gave similar results provided by an expert’s study realized previously as part of a national patrimony preservation policy. The obtained results are in good agreement, which makes this method an effective scientific tool for decision-making in view of prioritization of the maintenance after systematic inspection of masonry bridges such as the bridge studied in this work. Doi: 10.28991/cej-2021-03091770 Full Text: PDF
Trend Analysis of Meteorological Variables: Rainfall and Temperature Jada El Kasri; Abdelaziz Lahmili; Halima Soussi; Imane Jaouda; Maha Bentaher
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091765

Abstract

The Souss-Massa region in southwestern Morocco is characterized by a semi-arid climate with high variability in rainfall. Frequent droughts and flash flood events combined with overexploitation of water resources in recent decades have had a significant impact on the human security and the economy which is mainly based on agriculture, tourism and fishery. For better management of extreme events and water resources under changing climatic conditions, a study was carried out to quantify the seasonal and annual variability and trends in rainfall and temperature over the past three decades with data from three stations. Climatological representative of the Souss-Massa region. The Mann-Kendall (MK) non-parametric test and the Sen’s slope are used to estimate the monotonic trend and magnitude of the trend of the variables, respectively. Statistical analysis of the rainfall series data set highlights that the occurrence of rainfall is unpredictable and irregular and the both the seasonal and annual rainfall trend appears negative (downward) for all the three climatological stations. The minimum temperature shows a remarkable increasing trend both on annual and seasonal scale while the maximum temperature registers a slightly increasing trend. The study presents some new insights on rainfall and temperature trends that will have significant impacts on the surface and groundwater resources of the region under changing climatic conditions. The results can help to prioritize new strategies to mitigate the risk of droughts, of floods and to manage water resources to sustain the dependence of agriculture tourism and fishery sectors in the region. Doi: 10.28991/cej-2021-03091765 Full Text: PDF
Behavior of RC Wide Beams under Eccentric Loading Samer Magdy Mahmoud; Rasha T. S. Mabrouk; Magdy E. Kassem
Civil Engineering Journal Vol 7, No 11 (2021): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2021-03091766

Abstract

Wide beams are one of the widely used structural elements in RC buildings due to the many special features that characterize them. The main objective of this research is to investigate the behavior of wide shallow beams under the effect of eccentric loading acting along their cross sections. To achieve that, an experimental program that consisted of seven wide beams was conducted. All beams were loaded using two concentrated loads at their middle third where the main parameters considered were: the magnitude of the load eccentricity, the longitudinal spacing between shear reinforcement, and the arrangement of the longitudinal reinforcement. Following that, a finite element analysis was performed where the analytical model used was first verified using the data from the experimental program. The results from both the experimental and analytical programs were in good agreement. Then, the finite element analysis was extended through a parametric study where other variables were studies such as the compressive strength of concrete, the transverse spacing between stirrups and the longitudinal reinforcement ratio. The results showed that the value of the load eccentricity, spacing between shear reinforcement, the arrangement of the main reinforcement along the beam cross section, and the compressive strength of concrete significantly affected the torsional resistance of shallow wide beams. Conclusions and recommendations are presented which can be useful for future researchers. Doi: 10.28991/cej-2021-03091766 Full Text: PDF

Page 1 of 2 | Total Record : 12


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue