cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol 8, No 7 (2022): July" : 15 Documents clear
Assessing the Wastewater Pollutants Retaining for a Soil Aquifer Treatment using Batch Column Experiments V. R. Raji; S. Packialakshmi
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-011

Abstract

In this study, the Secondary Treated Waste-Water (STWW) to infiltrate through the soil matrix, hence eliminating the contaminants in the effluent. For this study, three types of soil, such as loamy sand, fine sand, and clayey soil, were subjected to two cycles of wetting and drying to assess the type of soil that removes the maximum contaminants under which cycle. At diverse locations, soil samples were collected and examined to determine the soil types. Likewise, STWW was collected from Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) and Perungudi Sewage Treatment Plant (PSTP) to illustrate the quality of water before Soil Aquifer Treatment (SAT). About 1.5 m in height and 8 mm in diameter of fabricated acrylic material columns are used for the soil aquifer treatment efficiency studies. Water quality parameters, namely pH, TDS, and turbidity, were monitored throughout the study. All the organic compounds present in water were reduced to a higher level only in the fine sand in the one-day wetting/drying cycle. pH was reduced from 8.55 to 7.5, TDS was reduced from 1580 mg/l to 850 mg/l, and Turbidity was reduced from 7.24 to 4.04 NTU. This proposed method is to minimize the amount of water pollution from the environment. It is an effective way to manage aquifer recharge (MAR). SAT is the easiest method, aquifer and/or soil-based treatment systems improve the effluent quality of wastewater by removing the trace elements in the aquifer during the recharge of groundwater. It is likewise attractive for technologically advanced as well as emerging countries, and it is supple enough to allow adaptation to home-grown requirements by uniting it with predictable natural or bringing about water and technologies of wastewater treatment. Doi: 10.28991/CEJ-2022-08-07-011 Full Text: PDF
Numerical Analysis of Seepage Failure Modes of Sandy Soils within a Cylindrical Cofferdam Aissa Bensmaine; Naima Benmebarek; Sadok Bensmebarek
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-06

Abstract

Soil seepage failure within cofferdams is a dangerous phenomenon that always poses difficulties for designers and builders of excavations in zones with high water levels. When the hydraulic head difference H between the upstream and downstream sides reaches a critical height, the downstream soil seepage failure occurs. Depending on soil properties, soil-wall interface characteristics, and cofferdam design, different seepage failure modes can be observed: heaving, boiling, liquefaction, or failure by reduction of the passive earth pressure. In the literature, there are differences, sometimes very large, in the critical value of the hydraulic head loss Hc/D inducing seepage failure given by several methods proposed for stability verification. Then, complex cases are generally approached using simplifying assumptions and adopting large safety factors to take account of uncertainties. In practice, geotechnical engineers deal with many kinds of excavations and different shapes of cofferdams, such as rectangular, square, or circular, which generate three-dimensional (3D) flow conditions. Axisymmetric seepage flow through the soil in a circular cofferdam is often used to model such 3D seepage flow. In this paper, using the numerical code FLAC, several numerical simulations are carried out in axisymmetric groundwater flow conditions to analyze the seepage failure modes of cohesionless sandy soils within a cylindrical cofferdam. The effects of the cofferdam radius, internal soil friction, soil dilatancy, and interface friction on the Hc/D value and failure mode are studied. The numerically obtained seepage failure modes are presented and discussed in various scenarios. The present results, illustrated in both tables and graphs, show a significant decrease in the value of Hc/Dinducing seepage failure, with a decrease in the cofferdam radius. They also indicate the sensitivity of the seepage failure mode to internal soil friction, soil dilatancy, interface friction, and cofferdam radius. As well, new terms are proposed for the seepage failure mode designations based on the 3D view of the downstream soil deformation. Doi: 10.28991/CEJ-2022-08-07-06 Full Text: PDF
Bridge’s Overall Structural Scheme Analysis in High Seismic Risk Permafrost Regions Zhihua Xiong; Jianbing Chen; Chen Liu; Jinping Li; Wenwen Li
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-01

Abstract

The mechanism of pile-soil reaction in frozen ground is not clear at present, but it is obvious that the reduction of dead weight will be beneficial to the seismic resistance of bridges. In view of the limited bridge engineering practice in high seismic risk permafrost regions, the paper addressed the structural performance of the superstructure and its effect on piles in these special regions. Four superstructures with different dead weights were compared, and bored piles were designed. Numerical simulations were implemented to investigate the refreezing time of the bored pile foundation. The concrete pile cooled rapidly in the first two days. The refreezing times of the GFRP, prestressed concrete T-girder, integrated composite girder, and MVFT girder were 15d, 37d, 39d, and 179d, respectively. The refreezing time of a pile in the same soil layer is mainly affected by the pile’s diameter, and it is significantly correlated to the square of the pile diameter. It reflects that the selection of bridge superstructures in the permafrost region is very important, which has been ignored in previous studies. The pile length and pile diameter of the lighter superstructure can be shorter and smaller to reduce the refreezing time and alleviate the thermal disturbance. Doi: 10.28991/CEJ-2022-08-07-01 Full Text: PDF
Mechanical Analysis of Subgrades of Road Pavements in Life Cycle Assessment Marina Donato; Bruno Guida Gouveia; Alexandre Simas de Medeiros; Marcelino Aurélio Vieira da Silva; Sandra Oda
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-012

Abstract

When evaluating the sustainability of a construction project, it is important to verify the influence of climate uncertainty and the depletion of natural resources that permeate the strategies to make infrastructure possible, especially those associated with the transportation sector, which have great potential to generate environmental impacts. Thus, the objective of this study is to evaluate the effect that subgrade material variation, which constitutes highway pavements with flexible surfacing, can generate in the Life Cycle Assessment (LCA) of these infrastructures. For this purpose, pavements that had the same materials and thicknesses for the execution of the base (gravel soil-NG') and the subbase (clay soil LG'), but with subgrades composed of different types of tropical soils, classified as lateritic and non-lateritic, were proposed. The combination of these elements enabled the elaboration of pavements with different service lives and atmospheric emissions. The scope of the study included the phases of extraction and production of the inputs necessary to build the roadway envisioned in each scenario, as well as the construction phase itself, considering the operation of construction equipment. The LCA focused on the emission of greenhouse gases (GHGs) and the quantity of primary energy employed in the phases considered. It was concluded that the materials used in this study have similar mechanical behavior, and therefore the results of the design of the thicknesses of the asphalt overlay were close and consequently result in similar energy consumption and greenhouse gas emissions. Doi: 10.28991/CEJ-2022-08-07-012 Full Text: PDF
Integration of Renewable Energies in Mobile Employment Promotion Units for Rural Populations A. Laabid; A. Saad; M. Mazouz
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-07

Abstract

The article aims to analyze, evaluate, and improve solutions for the integration of hybrid energy sources (Solar Photovoltaic PV/Batteries/Diesel Generator (DG)) in mobile service units (MSU), designed to provide services to rural populations (drug delivery, vaccination, training, employment promotion, bank, laboratory, etc.). The first objective is to evaluate the performance of two already deployed photovoltaic systems installed on the roofs of trucks, with respective powers of 2.12 and 3.54 kWp. Solar production, consumption, and SOC (State of Charge) of batteries are collected and analyzed. We modelled the energy conversion chain and simulated its behavior on all days of the year. Simulated results are then compared to the on-site measurements. Several association scenarios (PV/batteries) are then studied to propose the optimal combination, taking into account the surface offered for the installation of the PV modules (roof of the truck), the weight, and the lifespan of the batteries. The developed and deployed solution proposes more advantageous association scenarios (PV/Storage), and reduces the time of recourse to the DG. From this perspective, we simulated the operation of the hybrid system for the three battery capacities: 40,000, 31,680, and 19,200 Wh (~1667, 1320, and 800 Ah). The results reveal that the uncaptured energy for a 3540 Wp field is five times greater than that of a 2120 Wp field. On the other hand, the number of battery charge/discharge cycles is divided by ten. Doi: 10.28991/CEJ-2022-08-07-07 Full Text: PDF
Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software Catur Harsito; Teguh Triyono; Eki Rovianto
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-02

Abstract

The growing demand for energy has an impact on the development of environmentally friendly renewable energy. The sun is energy that has the potential to be used as electrical energy through light energy and heat energy. Recently, research interest related to photovoltaic performance has increased. Several studies have investigated the effect of panel cooling on photovoltaic performance. In this study, the use of exergy solar panels is considered to improve performance by adding a thermoelectric system. Research work related to photovoltaic testing with thermoelectrics at low temperatures has not been carried out. Therefore, experimental methods to obtain temperature profiles and simulation methods to see the power potential generated from thermoelectrics have been carried out. The experimental method is carried out using mono-crystalline panels with type K sensors to retrieve temperature data and data acquisition as deviations from the current, voltage, and temperature results of the panel. The simulation model was carried out using the ANSYS software. Tests are carried out, taking into account the effect of back panel temperature on system performance. The results showed that the photovoltaic temperature fluctuated due to the influence of cloud cover, the highest photovoltaic temperature was 57°C, and the lowest temperature was 30°C. The maximum power produced by photovoltaic is 39.8W. It is then applied to the thermoelectric simulation based on the highest temperature, and the maximum power value is 1673.4 mW. This photovoltaic-thermoelectric generator system produces a 4.2% increase in power value over conventional photovoltaic systems. The findings in this study can be used as a reference for all types of low-temperature photovoltaic-thermoelectric systems. Doi: 10.28991/CEJ-2022-08-07-02 Full Text: PDF
Sustainability of Suburban Industrial Development through Place Attachment Liwei Lu; Dingjiang Long; Yen-Ching Chuang; Marcel Pikhart; Xiaoyan He
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-014

Abstract

This research uses urban space reconstruction as the entry point, discussing the characteristics of residents’ sense of place in Lingang new town, Shanghai, based on the method of factor analysis to divide the sense of place into place attachment, place identity, and place dependence. On the whole, residents’ sense of place in Lingang new town is at a common level, and the comprehensive score of residents’ sense of place in Lingang new town is "more than half". Meanwhile, place attachment is the highest, place dependence is the lowest, and place identity is in the middle. Therefore, the sense of place mainly depends on place attachment. Using an independent T test and variance analysis to explore the characteristics of the sense of place, this paper has found that age, income level, education level, household registration, and migration patterns have significantly different influences on the three dimensions of the sense of place. There is no difference in gender and the type of occupation, whether they are working in Lingang New Town or not. The research on the sense of place in suburban industrial development zones presents a new perspective for solving the social space problems in the development zone. Finally, this research suggests improving the construction of public facilities, paying more attention to youth groups’ sense of place, and enhancing the sense of belonging to the highly educated groups and high-income groups, as well as strengthening innovation and entrepreneurship cooperation between the new town and the main city. Doi: 10.28991/CEJ-2022-08-07-014 Full Text: PDF
The Influence of Nanoclay and Powdered Ceramic on the Mechanical Properties of Mortar Noor R. Kadhim; Wail Asim M. Hussain; Abdulrasool Th. Abdulrasool; Mohammed A. Azeez
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-08

Abstract

The amount of concrete utilized worldwide has lately grown due to rising populations and urbanization. The gas emissions during cement manufacturing and the usage of common resources result in a significant environmental threat. As a result, researchers are attempting to minimize the amount of cement consumed by using waste materials while lowering building costs. This research aims to minimize the amount of cement used in concrete by partially replacing it with ceramic powder waste while also increasing the mechanical qualities of concrete mortar by substituting cement with nanoclay hydrophilic bentonite. Mortar samples were prepared using five different replacement percentages of cement by nanoclay, including 0, 2, 4, 6, and 8%, and two replacement percentages of cement by ceramic powder, including 0% and 20%. Compressive and flexural strength tests were performed on mortar samples for 7, 14, and 28 days of moist curing. The toughness was also measured for all mixes by measuring the area under the load-deflection curve. Also, water absorption and relative densities for all mortar mixes were measured. The results show that replacing cement with 2% nanoclay and 20% ceramic powder increases the flexural strength by 11%. Doi: 10.28991/CEJ-2022-08-07-08 Full Text: PDF
Field and Satellite Images-Based Investigation of Rivers Morphological Aspects Ala Hassan Nama; Ali Sadiq Abbas; Jaafar S. Maatooq
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-03

Abstract

Worldwide and especially in less developed regions, process-based evaluations and/or geomorphological information on large-scale rivers are still scarce. Such investigation become of ‎urgent ‎need due to the climate change and expected occurrence of extreme floods and drought which ‎may ‎threaten the safety of nearby and downstream cities, especially in regions that are highly sensitive and ‎affected by climatic changes. The Tigris River, in Iraq, is one such river that has undergone significant alteration to its flow and morphologic aspects due to climate change and the construction of many dams. However, morphology and its change for many reaches of this river are still uninvestigated. To this end, field and satellite-based investigations into the morphology of a reach located between Makhool District and Tikrit City have been conducted. In addition to the cross-sectional survey-based determination of the reach geometrical aspects, a sinuosity indices-based evaluation of the reach planform was implemented, utilizing a satellite indices-based approach. Furthermore, the characteristics of bed material were identified through field sampling. Investigation results show that the reach has a steep bed slope and many islands of low altitude with an elongated shape. The reach has a mild sinuosity with alternating bars. The dominant particle sizes of the bed material are coarse and medium gravel with a dominant particle shape of disc particles. Moreover, the satellite-based change detection indicated the fading out and disappearance of some secondary channels, the growth of many islands, and the movement of some bends downstream. The percentage of changing parts for the period 1975–2021 is 14%. Most of this change, 11%, occurred after the construction of the Mosul Dam. This reveals the sensitivity of reach morphology to flow change due to the construction of dams. The conducted fieldwork and the applied methodology contribute to supporting efforts to add knowledge worldwide about uninvestigated rivers. Doi: 10.28991/CEJ-2022-08-07-03 Full Text: PDF
Effective Use of Sacrificial Zinc Anode as a Suitable Repair Method for Severely Damaged RC Members Due to Chloride Attack Pinta Astuti; Rahmita Sari Rafdinal; Daisuke Yamamoto; Volana Andriamisaharimanana; Hidenori Hamada
Civil Engineering Journal Vol 8, No 7 (2022): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2022-08-07-015

Abstract

In many cases, the repair strategy by using sacrificial anodes for cathodic protection in real RC structures requires additional zinc anodes after several years due to the decreasing protective area. This experimental study evaluates the effectiveness of time lag application of sacrificial anode cathodic protection applied to RC beam specimens that deteriorated severely due to chloride attack. In the experiment, sacrificial anodes and cathodic protection (SACP) were applied to 41-year-old RC beam specimens exposed to natural marine environments in which the embedded steel bars were significantly corroded. The repair work was performed in three stages. Instant-off and rest potential tests of steel bars were conducted periodically to demonstrate the time-dependent depolarization value. In the first stage, a polymer-modified mortar as a patch repair material was cast to replace the concrete in the middle tensile part with small sacrificial anodes embedded in the mortar. After the protective current reaches an equilibrium state, the sacrificial anodes are disconnected from the steel bars for a year, defined as the second stage. During the one year in the second stage, the steel bar in the patch repair area remained passive, without any sign of corrosion. As for the third stage, additional sacrificial anodes were installed in the existing concrete part to protect the steel in it. From one year of observation after applying sacrificial anodes to old concrete parts, the time lag SACP application of both in patch and non-patch repair parts was clarified to be effective in stopping the corrosion of steel bar in both parts until 20–30 years based on the service life prediction. Doi: 10.28991/CEJ-2022-08-07-015 Full Text: PDF

Page 1 of 2 | Total Record : 15


Filter by Year

2022 2022


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue