cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 17 Documents
Search results for , issue "Vol 9, No 9 (2023): September" : 17 Documents clear
Enhancing Risk Assessment in Toll Road Operations: A Hybrid Rough Delphi-Rough DEMATEL Approach G. Ardi Pratama; Y. Latief; Bambang Trigunarsyah; L. Sagita Riantini; Lukas Beladi Sihombing
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-03

Abstract

This study aims to identify significant risks and their relationship to the successful operation of the Trans-Sumatra toll road in Indonesia. The research utilizes the Delphi and DEMATEL methods, along with rough set analysis, to identify and evaluate 28 risks associated with toll road operations in Sumatra. The research identifies 13 dominant risks, including policy changes, government intervention, inflation, financial distress, fluctuation of interest rate, fluctuation of currency, high cost of maintenance, low volume of traffic, competitive routes, overloading vehicles, many infrastructure defects, and natural disasters. In this case, natural disasters, inflation, and vehicles with excessive loads are the most dominant cause factors because those risks have the highest cause value based on the cause-effect diagram. Furthermore, the prominence diagram reveals that income risk, policy changes, and financial distress have notable implications for operational activities. The study presents a MCDM risk assessment approach that incorporates rough set analysis, providing a comprehensive understanding of the critical risk relationship factors for toll road operations. By integrating rough set analysis, this research contributes to the field of toll road operations and risk assessment. The identified risks and their relationships serve as a foundation for developing effective strategies for toll road operational management. Doi: 10.28991/CEJ-2023-09-09-03 Full Text: PDF
Subsurface Analysis Using Microtremor and Resistivity to Determine Soil Vulnerability and Discovery of New Local Fault Adi Susilo; Alamsyah M. Juwono; Faridha Aprilia; Farizky Hisyam; Siti Rohmah; Muhammad Fathur Rouf Hasan
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-014

Abstract

Microtremor and geoelectrical resistivity surveys have been conducted in areas where the April 10, 2021, earthquake of 6.1 Mw caused the most damage. Wirotaman Village, Malang Regency, was one of the regions with the most extensive damage. This study aims to investigate the seismic vulnerability and subsurface conditions that result in severe damage at the research location. This study's Horizontal to Vertical Spectral Ratio Analysis (HVSR) curve was derived from the recorded microtremor signal in the frequency domain. The frequency parameter and amplification factor obtained from the curve are used to determine the seismic vulnerability index. In addition, a geoelectrical resistivity study with a dipole-dipole configuration was conducted at the site with the most extensive damage. The results of this study show the correlation between the results of the HVSR curve analysis and geoelectrical resistivity in determining the seismic vulnerability of an area. The results indicated that the high seismic vulnerability index value ranged from Kg= 12.0 to 18.0, with the most severe damage concentrated in the Southwest at SA 05 and SA 06. Based on the results of the geoelectrical survey, information was obtained that several points of damage to buildings at SA 05 (red circle) were on the same line, where this condition was associated with the possibility of new faults at that location. This microtremor and geoelectric resistivity investigation reveals thick sedimentary deposits with a high seismic vulnerability index and low resistivity. This study's findings can be utilized as a guide for micro zonation studies in research areas. This research contributes to the surrounding community in the form of disaster mitigation, where construction must avoid local fault positions that have been found to reduce the level of damage when natural geological disasters occur. Doi: 10.28991/CEJ-2023-09-09-014 Full Text: PDF
Characteristic and Physicochemical Properties of Peat Soil Stabilized with Sodium Hydroxide (NaOH) Habib Musa Mohamad; Mohd Fahmie Izzudin Sharudin; Adriana Erica Amaludin; Siti Nor Farhana Zakaria
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-09

Abstract

Peat in various phases of decomposition has poor shear strength and high compressive deformation. For this research study, it will focus on stabilizing peat soil using NaOH. There are two main tests that were conducted in this research study, which are index property testing and the compaction test. For index property testing, there were six (6) experiments conducted to study the index properties of disturbed peat soil, which are moisture content, fiber content, organic content, liquid limit, pH, and specific gravity. Then, for the compaction test, a 4.5kg rammer was used to determine the best mixture of stabilizer blended with different volumes of 5%, 7%, and 9% stabilizer. The desired outcome of this study is to stimulate further research into the use of the chemical NaOH as a peat soil stabilizer for improved soil usage. 7% and 9% of NaOH only have a slightly different percentage, and it can be concluded that this was the optimum percentage of NaOH as a chemical stabilizer for peat soil. It can be seen clearly that 5% is the higher dry density with a lesser moisture content of the peat. When the percentage of NaOH was increased, the graph pattern also changed. NaOH has been observed as an alteration agent for peat soil dry density. It can be seen clearly that 5% NaOH is the higher dry density of the peat with the lesser moisture content and is suitable as a peat soil stabilizer. The increment of oxygen content recorded changes from 13.3% to 23%, while the sodium (Na) content decreased significantly with the increment of oxygen (O). Sodium content decreased from 8.7% for untreated specimens to 4.5% and 5.5% when peat was treated with NaOH, with 5% of NaOH and 9% of NaOH. Doi: 10.28991/CEJ-2023-09-09-09 Full Text: PDF
An Intelligent Approach for Predicting Mechanical Properties of High-Volume Fly Ash (HVFA) Concrete Musa Adamu; A. Batur Çolak; Ibrahim K. Umar; Yasser E. Ibrahim; Mukhtar F. Hamza
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-04

Abstract

Plastic waste (PW) is a major soild waste, which its generation continues to increase globally year in and year out. Proper management of the PW is still a challenge due to its non-biodegradable nature. One of the most convenient ways of managing plastic waste is by using it in concrete as a partial substitute for natural aggregate. However, the main shortcomings of adding plastic waste to concrete are a reduction in strength and durability. Hence, to reduce the undesirable impact of the PW in concrete, highly reactive additives are normally added. In this research, 240 experimental datasets were used to train an artificial neural network (ANN) model using Levenberg Marquadt algorithms for the prediction of the mechanical properties and durability of high-volume fly ash (HVFA) concrete containing fly ash and PW as partial substitutes for cement and coarse aggregate, respectively, and graphene nanoplatlets (GNP) as additives to cementitious materials. The optimized model structure has five input parameters, 17 hidden neurons, and one output layer for each of the physical parameters. The results were analyzed graphically and statistically. The obtained results revealed that the generated network model can forecast with deviations less than 0.48%. The efficiency of the ANN model in predicting concrete properties was compared with that of the SVR (support vector regression) and SWLR (stepwise regression) models. The ANN outperformed SVR and SWLR for all the models by up to 6% and 74% for SVR and SWLR, respectively, in the confirmation stage. The graphical analysis of the results further demonstrates the higher prediction ability of the ANN. Doi: 10.28991/CEJ-2023-09-09-04 Full Text: PDF
Effect of Openings on the Torsional Behavior of SCC Box Beams Under Monotonic and Repeated Loading Haneen Maad Mahdi; Rafaa M. Abbas
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-015

Abstract

Repeated Torsional loading occurs in many concrete structures, such as offshore structures, freeways, multistory parking garages, and other structures; however, repeated torsional loading is still poorly understood. This study aims to investigate the effect of openings on the ultimate and cracking torques, angle of twist, and modes of failure of self-compacted R.C. box beams under monotonic and repeated loading. Two groups of eight half-scale box beams with different numbers of circular openings in the web with a diameter of about 30% of the hollow box dimension were investigated. The first group (I) included four beams: one was the control box beam without openings, whereas the rest of the beams were hollow with one, two, or three openings in the web tested under monotonic loading. The second group (II) consisted of the same details as the first one tested under repeated loading. The range of the repeated loading was about 30% and 60% of the ultimate load of the monotonic tests. The study showed that the cracking and ultimate torques and the angle of twist of the tested beams were significantly reduced due to openings in the web. Results revealed a more pronounced effect for monotonic loading, with a maximum reduction of 20% and 26.8% in cracking and ultimate torsional strength, respectively, compared to monotonic loading. Moreover, results revealed that repeated loading causes inelastic deformations in proportion to the number of loading cycles. Doi: 10.28991/CEJ-2023-09-09-015 Full Text: PDF
Assessing Artificial Recharge on Groundwater Quantity Using Wells Recharge Waqed H. Hassan; Zainab N. Ghazi
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-010

Abstract

In arid and semi-arid countries like Iraq, which suffer from water scarcity due to the effects of climate change and decreased surface water flow, groundwater is considered a vital source of irrigation water. This study is concerned with the influence of artificial recharge on the rehabilitation of the unconfined aquifer called Al-Dibdibba, located between the cities of Najaf and Kerbala in central Iraq around 31°550′ N and 32°450′ N and 43°300′ E and 44°300′ E. Due to excessive groundwater pumping rates for irrigation, this aquifer has suffered from groundwater decline and increased salinization during the previous 20 years. By establishing a conceptual model in the groundwater modeling system software (GMS), a numerical model was made to simulate groundwater flow. Artificial recharge using recycled water (tertiary treatment) from Kerbala's primary WWTP was carried out using 25 injection wells. The model was calibrated against historical and observed water level data for periods from 2016 to 2017. Three scenarios to predict how the aquifer would act with artificial recharge of 5%, 8%, and 10% from the total daily outflow of the WWTP in Kerbala (100000 m3/day) were studied. The calibration model met the observed values of groundwater levels with R2 = 0.989 for steady-state simulations and R2 = 0.987 for transient simulations. In the final analysis of the simulation, the results show that the maximum predicted groundwater level was raised by the injection of treated water through 25 wells by 1.05 m for 5000 m3/day, 2 m for 8000 m3/day, and 3 m for 10,000 m3/day recharge pumping rates. In addition, if water were pumped into the aquifer, it might support the development of agricultural lands covering more than 93 km2. So, artificial recharge can be considered one of the important solutions to adaptation to the effects of climate change and desertification in Iraq. Doi: 10.28991/CEJ-2023-09-09-010 Full Text: PDF
Fundamental Challenges and Management Opportunities in Post Disaster Reconstruction Project Meervat R. Altaie; Marwa Makki Dishar; Ibrahim F. Muhsin
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-05

Abstract

The study examines the root causes of delays that the project manager is unable to resolve or how the decision-maker can identify the best opportunities to get over these obstacles by considering the project constraints defined as the project triangle (cost, time, and quality) in post-disaster reconstruction projects to review the real challenges to overcome these obstacles. The methodology relied on the exploratory description and qualitative data examined. 43 valid questionnaires were distributed to qualified experienced engineers. A list of 49 factors causes was collected from previous international and local studies. A Relative Important Index (RII) is adapted to determine the level of importance of each sub-criterion in the four main criteria (scope, time, cost, and quality) to represent the causing changes in projects. The concluded 13 important factors represent the challenges faced by managers. This process requires active participation in the management role to overcome potential delays that face a great challenge and cause huge waves of displacement that affect the Iraqi economy and lead to social and environmental modifications. Reconstruction projects create jobs, improve the quality of life, and encourage people to return to their homes and rebuild their cities. So, unlocking local potential is the key to sustainable rebuilding in Iraq. Doi: 10.28991/CEJ-2023-09-09-05 Full Text: PDF
Sustainable Use of Recycled Asphalt Pavement in Soil Stabilization Danilo Lima; Jair Arrieta-Baldovino; Ronaldo L. S. Izzo
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-016

Abstract

This study addresses unused recycled asphalt pavement (RAP) incorporated into sedimentary soil from the Guabirotuba Formation in Curitiba, Southern Brazil. Different percentages of RAP, ranging from 0% to 80% by weight, were mixed with the pure soil, with and without the addition of pozzolanic Portland cement. Tests were conducted to evaluate the mixtures' compaction properties, mechanical strength, and expansion after curing for up to 28 days. The results showed that adding RAP improved the mixtures' unconfined compressive strength (qu) and splitting tensile strength (qt). Up to 60% RAP, the qu increased by 260 kPa, and the qt increased by 340 kPa compared to the pure soil. The California Bearing Ratio (CBR) tests demonstrated an 18.62% improvement when 80% RAP was added to the untreated soil. In addition, the RAP also reduced the expansion of the compacted blends, with values decreasing from 1.19% to 0.88% with 80% RAP replacement. The expansion value was further reduced to 0.86% when the cement was added. The cement-soil-RAP compacted blends showed suitability for subgrade reinforcement, meeting the criteria of expansion <1% and CBR> 2%. Additionally, 3% cement and 40% RAP mixtures were suitable as a sub-base layer, with expansion <1% and CBR > 20%. The results provide valuable insights into utilizing RAP as an alternative material in soil improvement techniques employing the novelty porosity-to-cement index. Doi: 10.28991/CEJ-2023-09-09-016 Full Text: PDF
Effect of Class F Fly Ash on Strength Properties of Concrete Anjeza Alaj; Visar Krelani; Tatsuya Numao
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-011

Abstract

Reducing the amount of CO2 emissions in the environment is one of the priorities of the EPA and other environmental agencies. A way to reduce CO2 emissions is by using fly ash in the concrete industry. Aside from environmental benefits, fly ash has numerous quality advantages; some of the positive effects were recognized earlier; however, in this research, the objective is to replace cement with a different percentage of class F fly ash with a low CaO content to produce sustainable concrete. Laboratory tests were performed to examine the rational percentage of cement replaced by class F fly ash in ordinary concrete C–25/30 and high-performance concrete C–50/60. In total, twelve different mix designs were prepared to examine consistency, setting time, shrinkage, and compressive strength in different periods of curing for more than 600 days. Using recycled material in new buildings still has some obstacles, but the future of construction must be green, so this research indicates that the objective of producing ordinary and high-performance concrete was achieved by replacing 30% of cement with class F fly ash. Doi: 10.28991/CEJ-2023-09-09-011 Full Text: PDF
Evolution of Durability and Mechanical Behaviour of Mud Mortar Stabilized with Oil Shale Ash, Lime, and Cement Walid Fouad Edris; Hamza Al-Fhaid; Mahmoud Al-Tamimi
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-06

Abstract

The investigation into earthen construction technologies and materials is now acknowledged as a crucial area requiring further research. Earthen mortars are prevalent in both modern and traditional construction due to the abundance of earth material, their favorable thermal properties, and their low embodied energy. The objective of this study is to support the use of natural materials collected from north Jordan to enhance the mechanical properties and durability of mud mortar. The local soil was stabilized using Oil Shale Ash (OSA), Ordinary Portland Cement (OPC), and lime for producing mud mortar. Particle size analysis, plastic limit, liquid limit, XRD, and XRF were applied to assess the geotechnical characterization and mineral composition of the earthen stabilizers and local soil. In order to examine the mechanical properties (specifically compressive strength) and durability characteristics (such as water absorption and shrinkage) of mud mortar, a total of 8 mixtures were prepared. One of these mixtures served as a control, while the others were created by substituting soil with varying proportions of OSA, cement, and lime. The results show that the mud mortar contained 10% OSA and 10% cement, which exhibited the highest compressive strength. Moreover, an increase in the proportion of OSA in the soil led to a decrease in absorption and linear shrinkage, indicating that OSA is an effective stabilizing agent for mud mortar. Doi: 10.28991/CEJ-2023-09-09-06 Full Text: PDF

Page 1 of 2 | Total Record : 17


Filter by Year

2023 2023


Filter By Issues
All Issue Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue