cover
Contact Name
Nurhadi Setiawan
Contact Email
jurnal.lemigas@esdm.go.id
Phone
+6221-7394422
Journal Mail Official
jurnal.lemigas@esdm.go.id
Editorial Address
Jl. Ciledug Raya Kav. 109, Cipulir, Kebayoran Lama, Jakarta Selatan 12230
Location
Kota adm. jakarta pusat,
Dki jakarta
INDONESIA
Scientific Contribution Oil and Gas
ISSN : 20893361     EISSN : 25410520     DOI : https://doi.org/10.29017/SCOG.44.1.492
research activities, technology engineering development and laboratory in the oil and gas field including regional geology/basin modeling, petroleum geology, sedimentology, stratigraphy, petroleum geoscience, drilling and completion technology, production engineering, well simulation, formation evaluation, petrophysics, reservoir characterization, oil and gas reserves, reservoir modeling, field development/management, EOR, geomachanics, unconventional hydrocarbon technology, field processing facilities, flow assurance, gas technology/processing/storage, petroleum processing/refining technology, petroleum products, fuel quality/specification/storage, biofuel technology, corrosion/scale problem/water treatment, environment/remediation, CCUS, health and safety/petroleum hazard, emerging technologies
Articles 4 Documents
Search results for , issue "Vol 42, No 2 (2019)" : 4 Documents clear
ROCK PHYSICS TEMPLATE TO ESTIMATE THE EFFECTS OF TOTAL ORGANIC CARBON (TOC) AND MINERALOGY ON THE SEISMIC ELASTIC PROPERTIES OF IMMATURE SHALE RESERVOIR Hutami, Harnanti Y; Priniarti, Tiara Larasati; Winardhi, Ign Sonny; ., Handoyo
Scientific Contributions Oil and Gas Vol 42, No 2 (2019)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (594.134 KB) | DOI: 10.29017/SCOG.42.2.374

Abstract

The low porosity and permeability shale are nowadays known as self-resourcing reservoirs. In the unique organic shales, TOC has a signifi cant contribution to the elastic properties of rocks. TOC behaves like porosity to a density log and effects in decreasing density. To reduce the uncertainty due to TOC and mineral variability effect, a quantitative interpretation of shale reservoirs should be done properly to obtain the best image of shale systems. In this study, we built rock-physics templates (RPT) to esti mate seismic response by defi ning the relationship between total organic carbon (TOC) and effective elastic properties of shale reservoirs of a data set from South Sumatera Basin, Indonesia. RPT is carried out by incorporating the amount of organic matter into shale pore space as a solid-fi lling inclusion. Moreover, shale porosity is assumed to be fully water-saturated determined by the in-situ conditions. We have estimated the general distribution of pore geometry by investigating aspect ratio from the dataset. A solid background of shale from several different minerals is estimated by using effective medium theory. Properties of porous rocks for solid pore infi ll are estimated from a generalization of Brown-Korringa Equation. Effective elastic properties of bulk rock frame fi lled with a fl uid are obtained from Gassmann equations. Results show that increasing the TOC volumes generally reduces both P-wave and S-wave velocities, acoustic impedance, and density. On the contrary, the vp/vs ratio increased as the impact of immature organic matter which will be more affecting shale rigidity than its compressibility.
THE EFFECT OF ELECTROLYTES ON POLYMER VISCOSITY FOR EFFECTIVENESS OF POLYMER INJECTION Alli, Yani Faozani
Scientific Contributions Oil and Gas Vol 42, No 2 (2019)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (619.59 KB) | DOI: 10.29017/SCOG.42.2.386

Abstract

The use of polymer for tertiary oil recovery has been known to be important as viscosity modifier to increase sweep efficiency of water flood and chemical flood. The most common polymer used for chemical flood is hydrolyzed polyacrylamide (HPAM) that owing large number of charges along the polymer chains. However, formation water as dissolution water contain high electrolytes that has a great effect on polymer viscosity, as well as responsible to generate the efficiency of polymer flooding. In this study, the effect of electrolytes from saline and cation divalent to the viscosity of polymer was investigated. Three studied polymers were dissolved in various concentration of saline and cation divalent by analyzing the compatibility, viscosity, and the filtration ratio of polymers. The results showed that the presence of electrolytes in every concentration of water did not impact the compatibility and filtration ratio of polymers. Whereas, the addition of sodium chloride as saline ionic and calcium chloride as cationic divalent were both reducing the viscosity of polymers. The lower viscosity of polymer related to the ability of polymer to expand the hydrodynamic which limited by the neutralization of internal repulsion of the electrolytes.
NANO-SURFACTANT HUFF AND PUFF OPTIMATIZATION IN MARGINAL X FIELD USING COMMERCIAL SIMULATOR Paramastya, Ariel; Chandra, Steven; Daton, Wijoyo Niti; Rachmat, Sudjati
Scientific Contributions Oil and Gas Vol 42, No 2 (2019)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (790.843 KB) | DOI: 10.29017/SCOG.42.2.375

Abstract

Economic optimization of an oil and gas project is an obligation that has to be done to increase overall profi t, whether the fi eld is still economically feas ible or the fi eld has surpassed its economic limit. In this case, a marginal fi eld waschosen for the study. In this marginal fi eld EOR methods have been used to boost the production rate. However, a full scale EOR method might not be profi table due to the amount of resources that is required to do it. Alternatively, Huff and Puff method is an EOR technique that is reasonable in the scope of single well. The Huff and Puff method is an EOR method where a single well serves as both a producer and an injector. The technique of Huff and Puff: (1) The well isinjected with designed injection fl uid, (2) the well is shut to let the fl uid to soak in the reservoir for some time, and (3) the well is opened and reservoir fl uids are allowed to be produced. The injection fl uid (in this case, nano surfactant) is hypothesized to reduce interfacial tension between the oil and rock, thus improving the oil recovery. In this study, the application of Huff and Puff method using Nanoparticles (NPs) as the injected fl uid, as a method of improving oil recovery is presented in a case study of a fi eld in South Sumatra. The study resulted that said method yields an optimum Incremental Oil Production (IOP) in which the economic aspect gain more profi t, and therefore it is considered feasible to be applied in the fi eld.
SOUTH NATUNA BASIN RECONFIGURATION BASED ON RECENT SEISMIC AND GRAVITY SURVEYS Padmawidjaja, Tatang; Iskandar, Yusuf; Wibowo, Andy Setyo; Lelono, Eko Budi
Scientific Contributions Oil and Gas Vol 42, No 2 (2019)
Publisher : PPPTMGB "LEMIGAS"

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1645.73 KB) | DOI: 10.29017/SCOG.42.2.377

Abstract

The Geological Survey Center has conducted a seismic survey in the southern Natuna Sea region to obtain geological information below relating to the potential energy resources of the area. The area research is located in the western part and outside the Singkawang Basin area (BG, 2008), which is separated by a Metamorf ridge. 2D seismic survey results show 3 different rock units, namely shallow marine sedimentary rocks, tertiary sedimentary rocks and pre-Tertiary sedimentary rocks, with pre-Tertiary sediment depths of less than 2000 ms. Interpretation of seismic data shows the pattern of graben structures that form sub-basins. strong refl ectors seen in seismic record can distinguish pre-rift, syn-rift and post-rift deposits. There are 2 wells, namely Datuk 1X and Ambu 1X. Datuk 1X has a depth of 1187 meters, and The Ambu 1X has a depth of 880 meters that is crossed by a seismic line. Both drilling has obtained Tertiary aged sandstone that covers pre-Tertiary bedrock.Gravity anomaly data in the seismic region shows anomaly values between 10 to 54 mgal which form the anomaly ridge and basinThe ridge anomaly extends as an anticline, while the anomaly basin also rises to form a syncline. Sincline and anticline trending southwest - southeast, with widening and narrowing patterns.Based on its geological model, the depth of the sediment is relatively shallow between 1500 to 2000 meters. While the integration between seismic, gravity and geomagnetic data shows the discovery of new basins that have never been described before.Finally, the integration of seismic and gravity data succeed discovers a new basin which has never been delineated before. In addition, it shows the continuity of the regional geological structure spanning from the studied area to the West Natuna Basin which is well known to be rich in hydrocarbon potential.

Page 1 of 1 | Total Record : 4


Filter by Year

2019 2019


Filter By Issues
All Issue Vol 45, No 1 (2022): Issue In Progress Vol 44, No 3 (2021) Vol 44, No 2 (2021) Vol 44, No 1 (2021) Vol 43, No 3 (2020) Vol 43, No 2 (2020) Vol 43, No 1 (2020) Vol 42, No 3 (2019) Vol 42, No 2 (2019) Vol 42, No 1 (2019) Vol 41, No 3 (2018) Vol 41, No 2 (2018) Vol 41, No 1 (2018) Vol 40, No 3 (2017) Vol 40, No 2 (2017) Vol 40, No 1 (2017) Vol 39, No 3 (2016) Vol 39, No 3 (2016) Vol 39, No 2 (2016) Vol 39, No 1 (2016) Vol 38, No 3 (2015) Vol 38, No 2 (2015) Vol 38, No 1 (2015) Vol 37, No 3 (2014) Vol 37, No 2 (2014) Vol 37, No 1 (2014) Vol 36, No 3 (2013) Vol 36, No 2 (2013) Vol 36, No 1 (2013) Vol 35, No 3 (2012) Vol 35, No 2 (2012) Vol 35, No 1 (2012) Vol 34, No 3 (2011) Vol 34, No 2 (2011) Vol 34, No 1 (2011) Vol 33, No 3 (2010) Vol 33, No 2 (2010) Vol 33, No 1 (2010) Vol 32, No 3 (2009) Vol 32, No 2 (2009) Vol 32, No 1 (2009) Vol 31, No 3 (2008) Vol 31, No 2 (2008) Vol 31, No 1 (2008) Vol 30, No 3 (2007) Vol 30, No 2 (2007) Vol 30, No 1 (2007) Vol 29, No 3 (2006) Vol 29, No 2 (2006) Vol 29, No 1 (2006) Vol 28, No 3 (2005) Vol 28, No 2 (2005) Vol 28, No 1 (2005) Vol 27, No 3 (2004) Vol 27, No 2 (2004) Vol 27, No 1 (2004) Vol 26, No 2 (2003) Vol 26, No 1 (2003) Vol 25, No 3 (2002) Vol 25, No 2 (2002) Vol 25, No 1 (2002) Vol 23, No 3 (2000) Vol 23, No 2 (2000) Vol 23, No 1 (2000) Vol 18, No 1 (1995) Vol 17, No 1 (1994) Vol 16, No 1 (1993) Vol 15, No 1 (1992) Vol 14, No 2 (1991) Vol 14, No 1 (1991) Vol 13, No 1 (1990) Vol 12, No 1 (1989) Vol 11, No 1 (1988) Vol 10, No 3 (1987) Vol 10, No 2 (1987) Vol 10, No 1 (1987) Vol 9, No 1 (1986) More Issue