cover
Contact Name
-
Contact Email
jag.ft@ugm.ac.id
Phone
+62274-513668
Journal Mail Official
jag.ft@ugm.ac.id
Editorial Address
Geological Engineering Departement Universitas Gadjah Mada Jl. Grafika No. 2 Kampus UGM Yogyakarta 55281 Phone +62-274-513668 Fax +62-274-546039
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Applied Geology
ISSN : 25022822     EISSN : 25022822     DOI : https://doi.org/10.22146
Journal of Applied Geology – JAG focuses on the applied geology and geosciences with its key objective particularly emphasis on application of basic geological knowledge for addressing environmental, engineering, and geo-hazards problems. The subject covers variety of topics including geodynamics, sedimentology and stratigraphy, volcanology, engineering geology, environmental geology, hydrogeology, geo-hazard and mitigation, mineral resources, energy resources, medical geology, geo-archaeology, as well as applied geophysics and geodesy.
Articles 4 Documents
Search results for , issue "Vol 5, No 2 (2013)" : 4 Documents clear
Determination of suitable groundwater quality for agriculture by using GIS application in Bantul Regency, Yogyakarta Special Province, Indonesia Chhuon Kong; Heru Hendrayana; Agung Setianto
Journal of Applied Geology Vol 5, No 2 (2013)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3158.577 KB) | DOI: 10.22146/jag.7208

Abstract

irrigation purposes within Bantul area which is located on Yogyakarta Volcanic Groundwater Basin, 47 existing data points were used complementary with the results of 30 groundwater samples analysis which were collected from dug and tub wells in various locations of study area. ECw, TDS, pH and major cations: Na+, Ca2+, Mg2+, K+,and anions: Cl????, HCO???? 3 , SO2???? 4 , NO???? 3 were analyzed as evaluation index. The relative tendency of ion in epm shows Ca2+>K+>Na+>Mg2+ and HCO???? 3 >Cl????>SO2???? 4 . Variations in groundwater composition by using Mg/Ca vs. Na/Ca molar ratio indicates that the groundwater is close to silicate rock with influence of clastic carbonate rock. Higher salinity approach to the west of the Bantul indicates that groundwater quality is controlled by clastic carbonate rock and expose limestone of Sentolo hills. Groundwater samples fall under class I suggested that groundwater is good and suitable for irrigation based on Doneen’s classification of permeability index and 78.37% is in excellent category by Wilcox classification on N%. According to the SAR values plotted in the USSL diagram, the majority of the groundwater samples belong to C2-S1 and C2-S2 class, indicating medium salinity and low sodium water which can be used for irrigation with little danger. The suitability of groundwater quality for agriculture is determined by thematic maps produced from ArcGIS Spatial Analyst based on FAO guideline. Salinity is the significant problem that has slight to moderate restriction effect on crops productivities in this area. The ECw map indicates that good groundwater quality for crops is at the middle to the east of study area close to Opak River, while at the western irrigation water is affected but yielding no reduction on rice productivity. However, it has slight to moderate restriction on sensitive crops indicated in thematic map of crops land with different yield potential. The agricultural land in which has yield potential of 100%, 90% and 75% is about 2727.90 ha (38.56%), 735.49 ha (10.39%) and 208.98 ha (2.95%) of the study area respectively. Key words: Irrigation groundwater quality, total dissolved solids (TDS), electrical conductivity (EC), evaluation index, ArcGIS Spatial Analyst, FAO guideline, yield potential.
ESTIMATION OF THE GEOLOGICAL STRENGTH INDEX SYSTEM FOR CAVITY LIMESTONE LAYER IN QUARRY AREA, REMBANG, CENTRAL JAVA PROVINCE, INDONESIA R. Andy Erwin Wijaya; Dwikorita Karnawati; Srijono Srijono; Wahyu Wilopo
Journal of Applied Geology Vol 5, No 2 (2013)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (13738.293 KB) | DOI: 10.22146/jag.7209

Abstract

Limestone mining needs a good mine design which is safe for the environment. Mine design is determined by the rock mass quality. The rock mass quality in each mine location is not necessary the same depending on the geological conditions. The research area is located in limestone quarry of Sale District, Rembang Regency, Center Java Province-Indonesia. In the limestone quarry area, there is cavity zone which consists of cavity limestone layer at the wall of quarry bench. This cavity layer in limestone quarry has occurred by solution process. The cavity layer zone is a potentially weak zone which has caused bench failures in the limestone quarry area. The objective of this research is to analyze the rock mass quality in the cavity limestone layer using Geological Strength Index (GSI) system. Final result of the research is a rock mass characterization, specifically for cavity limestone layer. Keywords: geological strength index, limestone, cavity layer
DETERMINATION OF NUCLEAR POWER PLANT SITE IN WEST BANGKA BASED ON ROCK MASS RATING AND GEOLOGICAL STRENGTH INDEX Irvani Irvani; Wahyu Wilopo; Dwikorita Karnawati
Journal of Applied Geology Vol 5, No 2 (2013)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (859.231 KB) | DOI: 10.22146/jag.7210

Abstract

Indonesian government through the National Atomic Energy Agency has planned to build a nuclear power plant. One of the proposed sites is in West Bangka Regency, Bangka Belitung Archipelago Province. The engineering geology of this area is, however, not fully understood and requires further investigations. Engineering geology investigations were carried out by assessing the rock mass quality and bearing capacity based on field observation and drilling data. The assessment was conducted using Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification. The rock mass in the study area was divided into four units, namely Units of Sandstone, Granite, Mudstone and Pebbly Sandstone. The RMR and GSI values in the study area are influenced by the parameters of discontinuity space density, the slope of discontinuity orientation, grade of weathering and groundwater conditions. The assessment shows that the Granite Unit has the best quality which is shown by the average RMR value of 53 and GSI value of 66. Based on the average RMR value, the Granite Unit is estimated to have cohesion value between 0.2 and 0.3 MPa, friction angle between 25° and 35°, and allowable bearing pressure between 280 and 135 T/m2. Based on the GSI value, the Granite Unit is estimated to have uniaxial compressive strength value between 1.0465 and 183.8 MPa, tensile strength between (-0.0122) and (-5.2625) MPa, rock mass strength values between 24.5244 and 220.351 MPa, and modulus of deformation within a range of 1.73–86.68 GPa. The Granite Unit is considered to be the most appropriate location for the nuclear power plants. Keywords: Nuclear power plant foundation, geological strength index, rock mass rating, rock mass quality
CHARACTERISTICS AND LIQUEFACTION OF COAL FROM WARUKIN FORMATION, TABALONG AREA, SOUTH KALIMANTAN–INDONESIA Edy Nursanto; Arifudin Idrus; Hendra Amijaya; Subagyo Pramumijoyo
Journal of Applied Geology Vol 5, No 2 (2013)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6447.449 KB) | DOI: 10.22146/jag.7211

Abstract

Since the coal characteristic is the main controlling factors in coal liquefaction, thus five coal seams with different coal rank from Warukin Formation in Tabalong Area, South Kalimantan have been used in this study. Three seams were low rank coal (Wara 110, Wara 120, Wara 200) while two seams were medium rank (Tutupan 210 and Paringin 712). The objectives of this study was to investigate the effect of coal rank on the rate of coal conversion factor. Coal liquefaction was conducted in an autoclave on low pressure (14.7 psi) and temperature 120°C. Experiments were designed with time intervals 30, 60 and 90 minutes, respectively. The average coal properties of seam Wara 110, Wara 120 and Wara 200 were 26.65%, 5.08%, 46.26% and 30.60% for inherent moisture, ash content, volatile matter and. fixed carbon, respectively. In contrast, coal properties for seam Tutupan 210 and Paringin 712 were 18.42%, 1.81%, 23.02% and 35.76% for inherent moisture, ash content, volatile matter and fixed carbon, respectively. The maximum yields for Wara 110, Wara 120 and Wara 200 were 48.60% (30 minutes), 51.27% (60 minutes) and 46.72% (90 minutes). In comparison, Tutupan 210 and Paringin 712 resulted maximum yields of 8.22% (30 minutes), 18.35% (60 minutes), 6.23% (90 minutes). In conclusion, low rank coal has higher yield conversion compared to medium rank coal since it has higher H/C ratio. Keywords: Coal liquefaction, low rank coal, Kalimantan.

Page 1 of 1 | Total Record : 4