cover
Contact Name
-
Contact Email
jag.ft@ugm.ac.id
Phone
+62274-513668
Journal Mail Official
jag.ft@ugm.ac.id
Editorial Address
Geological Engineering Departement Universitas Gadjah Mada Jl. Grafika No. 2 Kampus UGM Yogyakarta 55281 Phone +62-274-513668 Fax +62-274-546039
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Applied Geology
ISSN : 25022822     EISSN : 25022822     DOI : https://doi.org/10.22146
Journal of Applied Geology – JAG focuses on the applied geology and geosciences with its key objective particularly emphasis on application of basic geological knowledge for addressing environmental, engineering, and geo-hazards problems. The subject covers variety of topics including geodynamics, sedimentology and stratigraphy, volcanology, engineering geology, environmental geology, hydrogeology, geo-hazard and mitigation, mineral resources, energy resources, medical geology, geo-archaeology, as well as applied geophysics and geodesy.
Articles 162 Documents
LATE OLIGOCENE THOLEIITIC LAVA FROM KENANGA RIVER, TEGALOMBO PACITAN, EAST JAVA Dian Novia Sartika; I Wayan Warmada; Bhakti H. Harahap; Widiasmoro Soewondo
Journal of Applied Geology Vol 1, No 1 (2009)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (737.339 KB) | DOI: 10.22146/jag.6671

Abstract

Watupatok Formation in Pacitan area consists of lava with basaltic composition and pillow structure. Kenanga river is only 5 km to southeast Watupatok village as type locality of this formation. Kenanga river’s lava were varying from diabasic with paving surface and columnar joint structure to basaltic composition with pillow structure. Lava were found as effusive flow and dike with sandstone inclusion. In field observation, lava exhibits strong porphiritic to aphyric texture, with vesicular to amygdaloidal structure. Plagioclase as phenocryst has mediumsized (2-4 mm) surrounded by volcanic glass as groundmass. Petrographic analysis shows intersertal to hyalophilitic texture, consist of plagioclase, pyroxene and opaque minerals as phenocryst and also groundmass together with volcanic glass. Seconday minerals are quartz, zeolite and calcite. Geochemichal analysis results indicate a low TiO2 (0.8– 0.9 wt.%), medium to high Al2O3 (14–17 wt.%), high Fe2O3 (10–12 wt.%) and low Mg value (Mg#) (39–42). According to TAS and AFM diagram, the rocks is apparently to be basalt and tholeiitic island arc magma. While spidergram pattern of the trace elements shows relatively flat fo HREE and enriched pattern on LREE. Niobium element displays a depleted anomaly, indicated that the crust influences in parental magma, which is another characteristic of magmatic island arc. Based on regional tectonic, the volcanic rocks from Late Oligocene in the area has relationship with subduction processes between Indo-Australia plate and Eurasian plate.Keywords: Pillow structure, tholeiitic, lava, subduction
Road to earthquake mitigation: Lesson learnt from the Yogyakarta earthquake 2006 Subagyo Pramumijoyo
Journal of Applied Geology Vol 1, No 2 (2009)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (65.45 KB) | DOI: 10.22146/jag.6672

Abstract

At early in the morning of May 27, 2006, people of Yogyakarta was stroke by earthquake and mostly heavily damaged building are in lowland or Yogyakarta depression where is occupied by the Young Merapi sediments. The magnitude of earthquake is Mw = 6.2 and USGS rapid moment tensor shows that this earthquake was due to strike-slip fault movement.Seismic history of Yogyakarta area shows that Yogyakarta was stroke by several earthquakes with different epicenter location. At least two earthquakes stroke the area, that is in 1876 and 1943. The damages are similar to the damages of actual earthquake. Yogyakarta depression is mostly covered by Young Merapi sediments that consist of tuff, volcanic ash, breccias, agglomerate and lava with Quaternary in age. The thickness of this sediment is up to 100 m.Our reactive work was to establish firstly zone of damage. For this purpose, we made aerial photograph along the most damaged area. In the same time one of our teams go to the field to measure the cracks, and the other teams to observe liquefaction, hydro geologic measurement, and observation on landslide induce by earthquake. Secondly, we must understand the soil properties and its thickness, because in seismic history it was a similar damage on the same area due to earthquakes however the earthquake epicenters were different. For this purpose we utilize the method of micro-tremors. We also made some drilling until 60 m each, measuring seismic velocity on bore hole, and magneto telluric measurement. We also have helped by Kyushu University in installing micro seismic net work. The research was followed by either undergraduate and graduate students. Fortunately our research was financed by AUN/Seed Net – JICA. Some of the results were published in a book entitled The Yogyakarta Earthquake of May 27, 2006. Another outcome is the Maps of Microzonation and Earthquake Hazard of Bantul Area that dedicated to Bantul people.Based on aerial photograph observation and field observation on Bantul Regency, especially along the Opak River, and to Wonosari to the East, there was no surface ruptures, so there is no fault on surface. Interpretation of aftershock data was showing the difference cluster. There is still open problem in determining either epicenter or aftershock location. The damage building was interpreted as due to its geologic setting, non engineered building, and close to epicenter of earthquake. This heavily damaged building are located on the Young Merapi sediments at Bantul Regency and lake deposits at Gantiwarno and Bayat area where it can amplify the surface seismic wave. It implies that Peak Ground Acceleration according to Indonesian National Standard should be modified in Yogyakarta area.Keywords: Earthquake, seismic, epicenter, micro-tremor, microzonation
Concentration of sheep manure bacteria in the immobilization of arsenic from groundwater using zero-valent Wahyu Wilopo; Keiko Sasaki; Tsuyoshi Hirajim
Journal of Applied Geology Vol 2, No 1 (2010)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1620.763 KB) | DOI: 10.22146/jag.6673

Abstract

Permeable reactive barrier column tests were performed to investigate whether anaerobic bacteria in sheep manure could help remove As from groundwater. One column served as a control and was packed with zero-valent iron (ZVI), compost leaf, wood chips, glass beads, and gravel, after which it was sterilized. The other (‘inoculated column’) was packed with the same ingredients, with the addition of sheep manure as a source of anaerobic bacteria. Simulated As-contaminated groundwater was prepared based on groundwater samples from Sumbawa Island, Indonesia, but with the arsenic concentration adjusted to 50 mg/L. The inoculated column was found to remove As more effectively from the simulated groundwater than the sterilized one. A gradual decrease in sulfate concentration was observed in the inoculated column at the rate of 0.26 mmol of sulfate/L/day, suggesting that there was sulfate-reducing activity in the microbial population. In addition, the sulfur isotope ratio showed -4.3 (‰) and 0.2 (‰) in influent and effluent, respectively, indicating that sulfate-reducing bacteria (SRB) consumed δ32S preferentially. Using population size estimates from the most probable number (MPN) method, the population of SRB was found to increase with distance traveled in the column. Profiling the community composition of the bacteria in different fractions of the inoculated column using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) on 16S rRNA sequences suggested that a majority of bacteria were various Clostridium species and one species of Proteobacteria, Geobacter metallireducens GS-15. Some of them may contribute to the removal of arsenic.Keywords: Sheep manure, zero valence iron, arsenic, immobilization, sulfate-reducing bacteria
Origin of the Late Paleozoic metamorphic rocks in East Johor, Peninsular Malaysia Sugeng Sapto Surjono; Shafeea Leman
Journal of Applied Geology Vol 2, No 2 (2010)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3104.433 KB) | DOI: 10.22146/jag.6674

Abstract

Low grade metamorphic rocks including slate, phyllite, metasandstone with subordinate schist and quartzite are widely distributed in the East Johor, Peninsular Malaysia. Regionally, this rock unit is extended northward up to northern Terengganu area. The protolith of this rocks unit were deposited in shallow marine depositional environment that subsequently metamorphosed during Carboniferous time. The very thick argillaceous and arenaceous rocks more than 5000 metres were produced by fast rate accommodation spaces due to global sea level rise during Early to Late Carboniferous against with high fine-grained sediment supply. Tectonic setting, basin formation and sedimentation processes were controlled by rifting of Indochina-East Malaya continental block from Gondwanaland during Devonian to Late Carboniferous. This rifting formed basins within a passive margin tectonic setting along the western margin of Indochina-East Malaya continental block.Keywords: Metamorphic rocks, shallow marine, Carboniferous, passive margin
Bio-geochemical simulation for solute transport in Piyungan landfill, Yogyakarta Special Province, Indonesia Keophousone Phonhalath; Dwikorita Karnawati; Heru Hendrayana; Doni Prakasa Eka Putra; Kenji Jinno
Journal of Applied Geology Vol 3, No 1 (2011)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4270.715 KB) | DOI: 10.22146/jag.7159

Abstract

Piyungan Landfill is the largest in Bantul Regency. According to water quality sampling taken from a leachate pond, there are significant contaminant issues resulting from landfill leachate. The objectives of this research were achieved by applying a two-dimensional bacteria mediated reduction numerical model was applied. Method of characteristic was applied to solve the advection part of the solute transport equation. Three bacteria (X1, X2, and X3) groups were defined in the redox model. In the conceptual model, bacterial X1 utilizes oxygen under aerobic conditions and nitrate, NO-3 under aerobic conditions as electron acceptors. Consequently, under aerobic conditions bacteria X2, and X3 utilize MnO2, and Fe(OH)3 respectively as electron acceptors. In the redox model organic carbon which was defined as CH2O was considered as the electron donor for all bacteria mediated reduction reactions. The results of research are to improve the understanding of biogeochemical processes in aquifer.
The mineralogy of gold-copper skarn related porphyry at the Batu Hijau deposit, Sumbawa, Indonesia May Thwee Aye; Subagyo Pramumijoyo; Arifudin Idrus; Lucas Donny Setijadji; Akira Imai; Naoto Araki; Johan Arif
Journal of Applied Geology Vol 3, No 1 (2011)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2275.214 KB) | DOI: 10.22146/jag.7177

Abstract

Clacic gold-copper bearing skarn in the Batu Hijau porphyry deposit is located in the western part of Sumbawa Island, Indonesia. Skarn mineralizations were found at the deep level of the deposit (-450m to -1050mL) by drilling program 2003. No evidence around Batu Hijau has limestone although most skarn are metasomatiz ed from carbonate-rich rock as limestone or marble. Most skarn-type metasomatic alteration and mineralization occurs at the contact of andesitic volcanic rock and intermediate tonalite porphyry intrusion and within intermediate tonalite in some. Although both endoskarn and exoskarn can be developed, it has no clear minerals to known the endoskarn. Exoskarn is more principle skarn zone. The formation of skarn occurred two min stages: (1) prograde and (2) retrograde. The prograde stage is temporally and spatially divided into two sub-stages as early prograde (sub-stage I) and prograde metasomatic (sub-stage II). Sub-stage I begin immediately after the intrusion of the tonalite stock into the calcium rich volcanic rocks. Then, sub-stage II originated with segregation and evolution of a fluid phase in the pluton and its invasion into fractures and micro-fractures of host rocks developed during sub-stage I. The introduction of considerable amount of Fe, Si and Mg led to the large amounts of medium- to coarse-grained anhydrous calc-silicates. From the texture and mineralogy, the retrograde metasomatic stage can be divided into two sub-stages: (a) early retrograde and (sub-stage III) and (b) late retrograde (sub-stage IV). During sub-stage III, the previously formed skarn zones were affected by intense multiple hydro-fracturing phases in the gold-copper bearing stocks. Therefore, the considerable amounts of hydrous calc-silicates (epidote), sulfides (pyrite, chalcopyrite, sphalerite), oxides (magnetite, hematite) and carbonates (calcite) replaced the anhydrous calc-silicates. Sub-stage IV was coexisting with the intrusion of relatively low temperature, more highly oxidizing fluids into skarn system, bringing about partial alteration of the early-formed calc-silicates and developing a series of very fine-grained aggregrates of chlorite, clay, hematite and calcite.
Study on mineralogy and chemistry of the saprolitic nickel ores from Soroako, Sulawesi, Indonesia: Implication for the lateritic ore processing Sufriadin Sufriadin; Arifudin Idrus; Subagyo Pramumijoyo; I Wayan Warmada; Akira Imai
Journal of Applied Geology Vol 3, No 1 (2011)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1714.386 KB) | DOI: 10.22146/jag.7178

Abstract

An investigation of mineralogy and chemistry of saprolitic nickel ores developed on ultramafic rock with different serpentinization degree from Soroako, Sulawesi has been conducted using X ray diffraction, thermal analysis, FTIR, and ICP-AES. The implication for the processing of these ores under acidic media was also studied. Weathering of unserpentinized peridotite in the Soroako west block produces saprolitic ore containing minerals such as relict olivine, goethite, quartz, talc with minor serpentine and smectite; whereas the weathered materials overlaying serpentinized peridotite in the Petea area are mainly composed of residual serpentine with lesser chlorite, maghemite, and remnant pyroxene and amphibole. Chemical analysis determined by ICP-AES demonstrates that west ore is higher in Si, Mg, and Ni, as compared to that Petea ore. Conversely, Fe and Al concentrations are higher in Petea ore than in west block ore. SEM-EDX examination reveals that olivine, talc, serpentine and goethite are the Ni-bearing phases occurring in west block ore; while serpentine is the principal host for Ni in the Petea ore. Chemical leaching under sulfuric acid reveals that olivine has highest dissolution rate in the west ore followed by serpentine; while talc, pyroxene, and iron oxides have slow dissolution rates. In contrast, serpentine in Petea ore is easily dissolved and is followed by chlorite; whereas amphibole, pyroxene, and maghemite are difficult to leach. Quartz is present in both ores and it seems to be undissolved during the chemical leaching. It is shown that Ni recovery from Petea saprolitic ore is higher than that of West Block ore.
Mineral paragenesis and fluid inclusions of the Bincanai epithermal silver-base metal vein at Baturappe area, South Sulawesi, Indonesia Irzal Nur; Arifudin Idrus; Subagyo Pramumijoyo; Agung Harijoko; Akira Imai
Journal of Applied Geology Vol 3, No 1 (2011)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2830.054 KB) | DOI: 10.22146/jag.7179

Abstract

The Baturappe prospect located at southern part of Sulawesi island, Indonesia, is a hydrothermal mineralization district which is characterized by occurrence of epithermal silver-base metal deposits. The mineralization is hosted in basaltic-andesitic volcanic rocks of the late Middle-Miocene Baturappe Volcanics. More than 20 units of quartz – base metal veins are distributed in the area, and one of the most significant is the Bincanai vein. This study is aimed to characterize the mineral paragenesis and to elucidate the physicochemical conditions of the formation of the deposit on the basis of mineral assemblage and fluid inclusion mictrothermometry. Sulphide assemblages in the vein indicate an intermediate sulfidation state epithermal; beside galena and sphalerite as the early stage minerals, chalcopyrite, tennantite, and tetrahedrite are also identified as the later stage. Microthermometric study of fluid inclusions in quartz indicates formation temperature of the vein ranges from about 230 to 280°C Histogram of homogenization temperature suggests that there are two generations of hydrothermal fluid responsible for the ore mineralization in the vein; the higher temperature range represents formation temperature of the base metal (galena, sphalerite), while the lower temperature range is correlate with the precipitation of the rest relatively lower temperature sulphides (chalcopyrite, pyrite, tetrahedrite, tennantite, polybasite, and Bi-Ag-Cu-Fe-bearing sulfide). The sequence is also consistent with the mineral paragenetic. The mean of salinity (2.0–2.5 wt.% NaCl eq.) indicates that fluid responsible for the mineralization in the Bincanai vein is relatively low-salinity fluid.
Petrogenetic interpretation of granitoid rocks using multicationic parameters in the Sanggau Area, Kalimantan Island, Indonesia Kyaw Linn Zaw; Lucas Donny Setijadji; I Wayan Warmada; Koichiro Watanabe
Journal of Applied Geology Vol 3, No 1 (2011)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6017.766 KB) | DOI: 10.22146/jag.7180

Abstract

Granitoid rock compositions from a range of tectonic environments are plotted on a multicationic diagram, based on major and trace element geochemistry and K-Ar dating. This shows that there is a different tectonic nature, rock affinity and suites. The basement granitoid rocks are ranging from diorite to granite composition. They appear to the products of crystallization differentiation of a calc-alkaline magma of island affinity and range to metaluminous granites, granodiorite and tonalite. The tectonic setting has two kinds which are subduction and post-subduction. The geochemical interpretation, origin and melting of mechanism and tectonic setting shows the types of granitoid are M and I-M type. The basement of granite and granodiorite are a segment of island arc that were happened the Sintang Intrusion as post subduction or syn-collision tectonic setting. Keywords: Petrogenetic, tectonic, affinity, Sintang Intrusion, Kalimantan
Geology and characteristics of Pb-Zn-Cu-Ag skarn deposit at Ruwai, Lamandau Regency, Central Kalimantan Arifudin Idrus; Lucas Donny Setijadji; Fenny Tamba; Ferian Anggara
Journal of Applied Geology Vol 3, No 1 (2011)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3208.629 KB) | DOI: 10.22146/jag.7181

Abstract

This study is dealing with geology and characteristics of mineralogy, geochemistry and physicochemical conditions of hydrothermal fluid responsible for the formation of skarn Pb-Zn-Cu-Ag deposit at Ruwai, Lamandau Regency, Central Kalimantan. The formation of Ruwai skarn is genetically associated with calcareous rocks consisting of limestone and siltstone (derived from marl?) and controlled by NNE-SSW-trending strike slip faults and localized along N 70° E-trending thrust fault, which also acts as contact zone between sedimentary and volcanic rocks in the area. Ruwai skarn is mineralogically characterized by prograde alteration (garnet and clino-pyroxene) and retrograde alteration (epidote, chlorite, calcite and sericite). Ore mineralization is characterized by sphalerite, galena, chalcopyrite and Ag-sulphides (particularly acanthite and argentite), which formed at early retrograde stage. Geochemically, SiO2 is enriched and CaO is depleted in limestone, consistent with silicic alteration (quartz and calc-silicate) and decarbonatization of the wallrock. The measured reserves of the deposit are 2,297,185 tonnes at average grades of 14.98 % Zn, 6.44 % Pb, 2.49 % Cu and 370.87 g/t Ag. Ruwai skarn orebody originated at moderate temperature of 250-266 °C and low salinity of 0.3-0.5 wt.% NaCl eq. The late retrograde stage formed at low temperature of 190-220 °C and low salinity of ~0.35 wt.% NaCl eq., which was influenced by meteoric water incursion at the late stage of the Ruwai Pb-Zn-Cu-Ag skarn formation. Keywords: Geology, skarn, mineralogy, geochemistry, Ruwai, Central Kalimantan

Page 1 of 17 | Total Record : 162