cover
Contact Name
Anita Susilawati
Contact Email
anitasusilawati@lecturer.unri.ac.id
Phone
-
Journal Mail Official
jomase@isomase.org
Editorial Address
Teknik Mesin, Fakultas Teknik, Universitas Riau Kampus Bina Widya, Jl. HR. Soebrantas Km. 12,5 Panam, Pekanbaru 28293, Riau, INDONESIA
Location
Kota pekanbaru,
Riau
INDONESIA
Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Published by Universitas Riau
ISSN : 23547065     EISSN : 25276085     DOI : http://dx.doi.org/10.36842/jomase
The mission of the JOMAse is to foster free and extremely rapid scientific communication across the world wide community. The JOMAse is an original and peer review article that advance the understanding of both science and engineering and its application to the solution of challenges and complex problems in naval architecture, offshore and subsea, machines and control system, aeronautics, satellite and aerospace. The JOMAse is particularly concerned with the demonstration of applied science and innovative engineering solutions to solve specific industrial problems. Articles preferably should focus on the following aspects: new methods or theory or philosophy innovative practices, critical survey or analysis of a subject or topic, new or latest research findings and critical review or evaluation of new discoveries. Scope The JOMAse welcomes manuscript submissions from academicians, scholars, and practitioners for possible publication from all over the world that meets the general criteria of significance and educational excellence. The scope of the journal is as follows: Naval Architecture and Offshore Engineering Computational fluid dynamic and Experimental Mechanics Hydrodynamic and Aerodynamics Noise and Vibration Aeronautics and Satellite Engineering Materials and Corrosion Fluids Mechanics Engineering Stress and Structural Modeling Manufacturing and Industrial Engineering Robotics and Control Heat Transfer and Thermal Power Plant Engineering Risk and Reliability Case studies and Critical reviews
Articles 6 Documents
Search results for , issue "Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)" : 6 Documents clear
Production Process of Front Lights on Anoa 2 6x6 Special Vehicles at PT. Pindad (Persero) Abdul Khair Junaidi; Nandha Syamza; Tri Subagyo
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (237.457 KB) | DOI: 10.36842/jomase.v65i3.211

Abstract

The headlights on Anoa 2 6x6 special vehicles are used for street lighting for anoa tanks at night. The purpose of this study was discussed the steps of production process of the Anoa 2 6x6 headlights in PT. Pindad. The headlight component was made in several manufacturing processes that were carried out. It consists of many parts, which a variety of production machines for the manufacture of each part. The manufacturing of the headlight components using machining processes such as laser cutting, welding, and drilling. The type of material used for the manufacture of the headlights and parts that was Aluminum Alloy 2044 and Steel ST-37. The result components were made the headlight frame, BT protectors, the front, side, and rear components.
Interlayer Effect on Connection of Mild Steel ST37 and Stainless Steel 201 on Rotary Friction Welding Yohanes Yohanes; Muhammad Heriansyah
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (763.815 KB) | DOI: 10.36842/jomase.v65i1.233

Abstract

Friction welding is a type of solid state welding where the welding process is carried out in a solid phase to combine various types of ferrous and non-ferrous metals that cannot be welded by the fusion welding method but for welding different metals the welding results are less than optimal due to cracks on the surface of the welding results and differences in mechanical properties that cause the welding result to be brittle, therefore an interlayer is used. In this study, observations were made on the process and results of the joint friction welding using dissimilar metal material between mild steel ST37 and stainless steel 201 with copper interlayer. The results of the test will be a tensile test to see the maximum tensile strength and a hardness test to see the hardness value of the interlayer variation of 0.3 mm, 0.5 mm, 1 mm and without an interlayer. The conclusions obtained are: (1) The effect of the addition of an interlayer on the rotary friction welding process includes the friction phase, the forging phase and the results of welding parameters in the form of motor power, motor angular speed, the change in specimen length is greater without using an interlayer compared to using an interlayer while the duration of welding time is greater using an interlayer than without using an interlayer. (2) The maximum tensile test results were obtained at the 1 mm interlayer at 482.43 MPa and the maximum hardness test results obtained at the 1 mm interlayer were 321.34 VHN.
Analysis of Production Process in Small Business Using Value Stream Mapping Approach Anita Susilawati; Muhammed Sarwar; Toni Darji; Nur Iksan Agusti
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (282.248 KB) | DOI: 10.36842/jomase.v65i1.235

Abstract

This paper aims to identify waste and analyse production process activities using the Value Stream Mapping (VSM) in a small business as a case study. The waste was identified by a waste relationship matrix and waste assessment questionnaire to determine the percentage of waste that occurs. Furthermore, a detailed selection of waste mapping based on the value stream analysis tool was carried out. Based on the VSM analysis, it was found the value added activities of 71% of the total production time and 29% of other activity times (non value added). In the case study occurred the waste for the operator's work method at the station of printing and cutting station. The VSM was performed to reducing the waste. The result depicted reduction in lead time on the production floor was 2.3 hours. So, the company in the case study can eliminate the waste time in their production process activities.
Failure Mode and Effect Analysis (FMEA) of Pneumatic System of CNC Milling Machine Yudi Dwianda
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (163.967 KB) | DOI: 10.36842/jomase.v65i1.239

Abstract

The purpose of this study is to determine the type of failures, the causes, as well as efforts and proposed actions that can be taken to improve the performance of the pneumatic system of CNC milling machines. The Failure Mode and Effect Analysis (FMEA) method is used to find priority problems through Risk Priority Number (RPN) for pneumatic system of components of CNC milling machine. The results of critical component analysis were a leakage occurs in pneumatic valve component, which the most critical risk of the RPN value. It potential failure was caused the high humidity and poor air quality from the compressor, which the RPN of 392 and 384 respectively. The proposed improvement was the replacement of damaged components and optimizing the preventive maintenance, which follow the right operation and maintenance procedures recommended as suggested by the manufacturer.
Automatic Task Machine (ATM) Design for Logistic Package by Method Analytical Hierarchy Process (AHP) Through Approach the Design for Manufacturing (DFM) Deni Pranata; Dodi Sofyan Arief
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (675.775 KB) | DOI: 10.36842/jomase.v65i1.226

Abstract

The Automatic Task Machine (ATM) machine for logistics packages is a machine vision to measure the dimensions and other components in form load cell, which serves to measure the mass of an object. This machine design was development the addition of components such as insert card, screens, navigation buttons, receipt printers, automatic package doors and a storage room delivery mechanism. Method of Analytical Hierarchy Process (AHP) was chosen to determine the ATM design for the optimal logistics package for the best alternative decision. The questionnaires were made to get priority consumer needs, which it used for the initial design. The consumer needs questionnaire was based on several indicators, namely: ergonomics, measurement of dimensions and weight, package transmission and package storage. The next stage was selecting the optimal design using AHP, which involves Expert based on the indicator of a product. The highest indicator value obtained for the logistics package ATM is "dimension and weight" with a value of 5.22 and the optimal design choice was "alternative 3". The optimal design choice was analyzed using the Design for Manufacturing (DFM) approach to consider the cost of manufacturing product, which aims to minimize the cost of making ATMs for logistics packages.
Design of a Multi-Functional Wheelchair Based Fuzzy Analytical Hierarchy Process Muhammad Nur Iksan; Anita Susilawati
Journal of Ocean, Mechanical and Aerospace -science and engineering- Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse)
Publisher : International Society of Ocean, Mechanical and Aerospace -scientists and engineers- (ISOMAse)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (516.424 KB) | DOI: 10.36842/jomase.v65i1.229

Abstract

Wheelchairs are tools for humans who experience illness, disabilities, and injuries that cause walking difficulties. There are many types of wheelchairs on the market, while wheelchairs that function to help users defecate flexibly have not been widely sold in the market. Therefore, it is necessary to develop a flexible and multifunctional wheelchair that can assist the users in carrying out their activities. This study aims to develop a design of the multifunctional wheelchair. The designing of multifunctional wheelchair based the FAHP (Fuzzy Analytical Hierarchy Process) method. The use of the FAHP was to select the optimal design and selection of the best alternatives among wheelchair’s indicators of design proposed. The results of calculation of weight values for wheelchair design were obtained a percentage of alternative 1 of 48% and alternative 2 of 52%.

Page 1 of 1 | Total Record : 6


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 67 No 3 (2023): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 67 No 2 (2023): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 67 No 1 (2023): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 66 No 3 (2022): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 66 No 2 (2022): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 66 No 1 (2022): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 65 No 3 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 65 No 2 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 65 No 1 (2021): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 64 No 3 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 64 No 2 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 64 No 1 (2020): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 63 No 3 (2019): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 63 No 2 (2019): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 63 No 1 (2019): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 62 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 61 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 60 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 59 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 58 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 57 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 56 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 55 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 54 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 53 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 52 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 51 No 1 (2018): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 50 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 49 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 48 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 47 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 46 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 45 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 44 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 43 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) Vol 42 No 1 (2017): Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) More Issue