cover
Contact Name
Budi Arifvianto
Contact Email
budi.arif@ugm.ac.id
Phone
+628973767268
Journal Mail Official
jmpc@ugm.ac.id
Editorial Address
Departemen Teknik Mesin dan Industri, Universitas Gadjah Mada. Jl. Grafika 2, Yogyakarta 55281, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of Material Processing and Characterization (JMPC)
ISSN : 27149722     EISSN : 27161285     DOI : 10.22146
Core Subject : Engineering,
Journal of Materials Processing and Characterization (JMPC) is an international, open-access and peer-reviewed journal aimed to facilitate researchers in disseminating their research works in the field of processing and characterization of engineering materials as well as biomaterials for biomedical applications. In general, JMPC covers all the research topics related to the processing (such as material preparations, fabrication techniques, post-processing treatments) and characterizations (such as novel methods for characterization, experimental testing and numerical analyses) of metals, polymers, ceramics and composites. To be more specific, the journal covers the following research topics: - Processing technologies of engineering materials and biomaterials, including casting, solidification, forming, forging, hot and cold-working, machining, powder metallurgy, extrusion, heat treatments, additive manufacturing, welding, and injection moulding. - Surface treatments of engineering materials and biomaterials, including coatings, shot and grit blasting, anodization, physical and chemical treatments. - Characterizations of engineering materials and biomaterials, including microstructural analysis, surface characterizations, mechanical testing, electrochemical characterization and tribological testing. - Failures of engineering materials and biomaterials, including fractures, fatigue, corrosion and wear.
Articles 13 Documents
A Preliminary Study of 316L Stainless Steel Finishing Process by the Tumbling Method with Acrylic Abrasive Media Finny Pratama Putera; S Suyitno
Journal of Material Processing and Characterization Vol 1, No 1 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (262.668 KB) | DOI: 10.22146/jmpc.51408

Abstract

A certain level of roughness of the surface of a hip prosthesis is necessary to minimize wear on components. Smoothing of the surface roughness can be performed by the tumble finishing method. This research was aimed to figure out the effect of spindle rotary speed on the level of roughness of the test specimen surface. The test specimen was made of 316 stainless steel, which is one of the materials constituting the component of the femoral head in a hip prosthesis. The abrasive media used was acrylic type plastic with a 4-mm-diameter spherical profile. The results of this tumbling process experiment demonstrate that the effective speed at which the cover surface of the test specimen was smoothed was the spindle rotary speed of 125 rpm.
Compressive Strength and Thermal Conductivity of Porous Mullite Ceramics Muhammad Waziz Wildan; F Marpaung
Journal of Material Processing and Characterization Vol 1, No 1 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (776.545 KB) | DOI: 10.22146/jmpc.51410

Abstract

Porous ceramics are a form of ceramic material with widespread applications, such as filters, isolators, and acoustics. This research aimed to investigate the compressive strength and thermal conductivity of porous mullite ceramics (3Al2O3.2SiO2 or Si2Al6O13) produced using dry yeast powder as a PFA (pore-forming agent). Kaolin powder (Al2O3.2SiO4.2H2O or Al2Si2O5(OH)4) was used as a raw material for producing mullite ceramics. Kaolin powder and dry yeast powder were mixed at a variety of dry yeast powder weight fractions: 0%, 5%, 10%, 15%, 20%, and 25%. The composition was mixed using Turbula Mixer for 1 hour. The cylindrical green body (diameters of 12 mm, 15 mm, and 30 mm) of every constituent was formed by the uniaxial pressing method at 10 MPa. Monolithic kaolin was sintered at variable temperatures (1,100 oC, 1,200 oC, 1,300 oC, 1,400 oC, 1,450 oC) for 2 hours then subjected to several tests for its density. From the bulk density tests, it was found that the optimum temperature for 2-hour sintering was 1,450 oC. This temperature was then used for the sintering process of the kaolin specimens which contained dry yeast powder. Testing was performed on the microstructure, bulk density, burning waste in mass and volume, compressive strength, and thermal conductivity. According to the literature, kaolin will transform into mullite (3Al2O3.2SiO2 or Si2Al6O13) and cristobalite (SiO2) at 1,450 oC. It was found that with the increase in the content of dry yeast powder as PFA in the mixture with kaolin, the bulk density decreased (from 2.44 gr/cm3 to 1.521 gr/cm3), the porosity increased (from 23.77% to 52.48%), the compressive strength decreased (from 38.04 MPa to 4.51 MPa), and the thermal conductivity decreased (from 3.76 W/moC to1.34 W/moC), each from yeast powder content 0% to 25%.
Tensile Strength of Carbon Fiber/Epoxy Composite Manufactured by the Bladder Compression Molding Method at Variable Pressure Levels Ignatius Henry Ismadi; Gesang Nugroho
Journal of Material Processing and Characterization Vol 1, No 1 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (482.216 KB) | DOI: 10.22146/jmpc.51411

Abstract

Composite materials uses have been increasingly ubiquitous due to their advantages, for example, in being strong, lightweight, and rust-resistant. Various composite manufacturing processes are designed to obtain composite products of better quality, including minimizing the number of pores or voids trapped within and increasing the fiber volume fraction until an optimal value is achieved. The method employed in this research was the bladder compression molding method, and the materials used were woven carbon fabric and epoxy matrix. According to previous research which used this method, the higher the pressure in the bladder, the better the product quality generated. The aim of this research was to investigate the effect of changes in the pressure level in the bladder (1, 2, 3, 4, 5, 6, 7, and 8 bar) on the mechanical properties of the composite produced. The test specimen was gained by cutting the composite product with a CNC router machine. The tensile test results indicate that the ultimate testing tensile strength was 604 MPa and that the optimal pressure in the bladder was 7 KPa. The conclusion of this research is that the composite product quality would increase with the progressive increase in the bladder pressure to the point of optimal pressure.
Tensile Strength of Carbon Fiber/Epoxy Composite Manufactured by the Bladder Compression Molding Method at Variable Curing Temperatures Antonius Dwi Setyoko; Gesang Nugroho
Journal of Material Processing and Characterization Vol 1, No 1 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (400.678 KB) | DOI: 10.22146/jmpc.51413

Abstract

Corrosion-resistant, high-strength, low-density composite materials are seeing increased applications in a wide variety of products. The composite constituents of matrix and reinforcement require molding technologies and methods to generate products. The bladder compression molding method is an effective method of manufacturing of composite products with a tubular shape, cavity, and/or closed contour. The properties of the composite materials produced are determined by three variables, namely. curing pressure, temperature, and time. This research was conducted to learn the effect of temperature on the mechanical properties of the composite materials produced from the process with the bladder compression molding method. Based on the thickness, tensile strength, and modulus of elasticity of the product from the experiment conducted, the optimal temperature of the process was found to be 120 ºC
The effect of AA5083H116 2-layer MIG welding speed on physical and mechanical properties M Mudjijana; Viktor Malau; Urip Agus Salim
Journal of Material Processing and Characterization Vol 1, No 1 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (753.6 KB) | DOI: 10.22146/jmpc.51417

Abstract

Metal welding can be performed on 1 layer or more depending on the thickness of the plate welded. In the case of 3-mm-thick plates, high-efficiency welding can be carried out on 1 layer if appropriate welding speed, voltage, and amperage are applied. If two layers are to be used, sound weld of 3-mm-thick plates can be achieved if higher welding speed and lower voltage and amperage are applied. This research was intended to conduct 2-layer MIG weld works at welding speeds of ≥10, 13, and 16 mm/s in accordance with previous research studies and to analyze the physical and mechanical properties generated. This research employed the AA5083H116 material, ER5356 electrode, and argon gas. During the welding processes, the thermal cycles were recorded, and after the processes, the welding results were observed for the macro- and microstructures and for the optimal welding speed under an SEM. In addition, tensile tests, Vickers microhardness tests, and corrosion tests were also undertaken. The results show that the 2-layer MIG welding at the welding speed of 10 mm/s produced the best physical and mechanical properties.
A Preliminary Study of Extraction and Characterization of Nanocrystalline Cellulose (NCC) from Ramie Fiber K Kusmono; Muhammad Waziz Wildan; Mochammad Noer Ilman
Journal of Material Processing and Characterization Vol 1, No 1 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (233.581 KB) | DOI: 10.22146/jmpc.51418

Abstract

Nanocrystalline cellulose (NCC) is today’s one of rapidly growing nanocomposite reinforcing materials. This is thanks to some advantages that come with it over anorganic nanocomposite reinforcing materials, for example, nanoclay, nanosilica, nanoalumina, carbon nanotubes, among others. Some of the advantages of NCC are environment-friendliness due to being organic-compound-based, high mechanical property, and easy manufacturing. NCC can be extracted from natural cellulose sources, such as natural fiber, wood, and animals. One of the natural fibers rich in cellulose content, in this case around 80%, is fiber of ramie which is ubiquitous in Indonesia. It is well known that the acid hydrolysis method is an easy route to NCC fabrication. A number of chemical treatments like de-waxing, bleaching, and alkaline treatment are typically performed prior to acid hydrolysis process. The effect of such chemical treatments as precursors of alkaline hydrolysis on ramie fiber characteristics was investigated in this research. Firstly, ramie fiber was cut 1 cm in size, then grinded and sieved. The fiber was then subjected to de-waxing process by adding it into a toluene-ethanol solution (1:2). Then, it was submitted to bleaching with 0.7% sodium chlorite (NaClO2) solution at 75 °C for 1 hour. Lastly, the fiber was subjected to an alkaline treatment in 2% NaOH solution for 2 hours. Characterization with FT-IR, XRD, and TGA of the fiber which had underwent a number of surface treatments was conducted. Results show that the chemical treatments had successfully removed amorphous components like lignin and hemicellulose from the ramie fiber. Chemical treatments were proven able to increase the crystallinity index and thermal stability of ramie fiber.
The Effects of Withdrawal Stop Duration in the Directional Solidification of Al-7 wt% Si Alloy on Solidification Parameters, Microstructure, and Microhardness Seab Piseth; Dedy Masnur
Journal of Material Processing and Characterization Vol 1, No 1 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (965.511 KB) | DOI: 10.22146/jmpc.52249

Abstract

The effects of withdrawal stop duration in the directional solidification of Al-7 wt% Si alloy on solidification parameters, microstructure, and microhardness were investigated. Directional solidification experiments were carried out in five stopping durations: 0 s, 20 s, 30 s, 40 s, and 50 s. Some solidification parameters such as growth rate and temperature gradient were calculated in the stopping region 15 mm from the bottom of the sample. Microstructure parameters such as primary and secondary dendrite arm spacings were defined on both longitudinal and transverse sections in the stopping region, whereas microhardness properties were tested on the longitudinal section in this region. With the rise in the withdrawal stop duration from 0 s to 50 s, the growth rate decreased slightly from 1.26 to 0.84 mm/s, while the temperature gradient remained at 1.71 ˚C/mm. Furthermore, the microstructure of α-Al dendrites became coarser, and their shapes changed from thin to irregular plates. Primary and secondary dendrite arm spacings increased from 106.4 to 205.7 µm and 19.4 to 38.1 µm, respectively, when the stopping duration was increased. In addition, the hardness decreased from 54.0 to 49.9 HV.
Effect of Tempering Temperature on Physical and Mechanical Properties of Martensitic Stainless Steel Repaired with Gtaw Gangsar Pinilih; Kusmono Kusmono
Journal of Material Processing and Characterization Vol 1, No 2 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.116 KB) | DOI: 10.22146/jmpc.53220

Abstract

One of the driving equipment to produce electricity that is widely used is gas turbines. To guarantee gas turbine can be operated according to its design and capacity, it is necessary to choose a material that is suitable for its operating conditions and working temperature. Commonly gas turbine compressor blade material is a martensitic stainless steel which has a high enough strength at the compressor working temperature. Damage that is often experienced occurs at the compressor blade and turbine blade. Gas tungsten arc welding (GTAW) build-up repair is one of the methods used to repair blades. This research was conducted to analyze the effect of tempering temperatures on martensitic stainless steel repaired with GTAW. Research was focus on mechanical properties and microstructure after repaired with GTAW and had heat treatment with various tempering temperatures. In the microstructure, all weld area of the specimens that were tempered at temperatures of 200, 500 and 600°C showed the same microstructure characteristics which consisted of a matrix of tempered martensite as well as chromium carbide. The size of tempered martensite at temperatures of 600°C is larger than 500 and 200°C. The strength and hardness of the material with a tempering temperature of 200°C is higher in value compared to tempering temperatures of 500°C and 600°C, while the toughness of the material with tempering temperature of 500°C is higher compared to 200°C and 600°C. 
The Effect of Varying Water to Powder Ratios on the Microhardness and Microstructure of Mineral Trioxide Aggregate Rethy Den; Rini Dharmastiti; Nuryono Nuryono; Leny Yuliatun; Widjijono Widjijono
Journal of Material Processing and Characterization Vol 1, No 2 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.116 KB) | DOI: 10.22146/jmpc.68279

Abstract

The composition of water and powder in a mixture is one of the common problems in application as clinicians typically estimate the ratio chairside. The purpose of this study was to investigate the effect of varying water-to-powder ratios on the microhardness and microstructure of mineral trioxide aggregate (MTA). ROOTDENT MTA was investigated. One gram of cement was mixed with 0.28, 0.33, and 0.40 grams of distilled water and was stored for 1, 7, and 28 days in the water. Samples were subjected to x-ray diffraction (XRD), scanning electron microscopy (SEM), and microhardness tests. Tricalcium silicate, dicalcium silicate, zirconium dioxide, calcium carbonate, and calcium hydroxide were detected by XRD. SEM showed the presence of amorphous, porous capillary channel and capillary structure on the surface of the specimens. The SEM image for each water-to-powder ratio of the surface of the material was indistinguishable from the other. The highest microhardness was exhibited by the MTA specimen with the 0.33 water-to-powder ratio submerged in the water for 28 days.
The Effect of Clay Addition on the Mechanical Strength of Unsaturated Polyester Hybrid Composite Reinforced with Woven Agel Leaf Fiber/Glass Fiber Orisanto Darma Setiawan; Kusmono Kusmono; Jamasri Jamasri
Journal of Material Processing and Characterization Vol 1, No 2 (2020): Articles
Publisher : Departmen Teknik Mesin dan Industri, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.027 KB) | DOI: 10.22146/jmpc.68280

Abstract

In the field of material technology, natural fiber materials are candidates for reinforcement in the production of lightweight, high-strength, environment-friendly, economical composites. Hybrid composites are comprised of a variety of reinforcement, fillers, and polymers. The objective of this research was to figure out the effect of clay addition on the mechanical properties of hybrid composites reinforced with woven agel leaf fiber/glass fiber. The materials used included woven agel leaf fiber, glass fiber, clay, Yukalac BQTN 157 type unsaturated polyester resin, and methyl-ethyl ketone peroxide catalyst. Firstly, the woven agel leaf fiber was given an alkaline treatment by submersion in a 4% NaOH solution for 1 hour, then rinsed with clean water and dried in the open air for 48 hours. The composite manufacture process employed 3 sheets of woven agel leaf fiber and 4 sheets of glass fiber sized 25 cm × 20 cm with unsaturated polyester matrix. The manufacture method used was the vacuum bagging method with a suction pressure of –70 cmHg. The mechanical tests carried out consisted of tensile test (based on the ASTM D638 standard), bending test (based on the ASTM D790 standard), and impact test (based on the ASTM D5942 standard). The results show that an addition of 1 wt% clay was able to increase the tensile strength, bending strength, and impact strength of the hybrid composite reinforced with woven agel leaf fiber/glass fiber by 7.26%, 30.85%, and 36.25%, respectively.

Page 1 of 2 | Total Record : 13